首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10022篇
  免费   1597篇
  国内免费   1743篇
测绘学   736篇
大气科学   1644篇
地球物理   2869篇
地质学   4998篇
海洋学   1015篇
天文学   439篇
综合类   668篇
自然地理   993篇
  2024年   43篇
  2023年   108篇
  2022年   269篇
  2021年   337篇
  2020年   266篇
  2019年   354篇
  2018年   724篇
  2017年   653篇
  2016年   550篇
  2015年   445篇
  2014年   465篇
  2013年   440篇
  2012年   985篇
  2011年   728篇
  2010年   438篇
  2009年   439篇
  2008年   397篇
  2007年   348篇
  2006年   370篇
  2005年   1025篇
  2004年   1078篇
  2003年   884篇
  2002年   605篇
  2001年   354篇
  2000年   236篇
  1999年   152篇
  1998年   100篇
  1997年   117篇
  1996年   69篇
  1995年   54篇
  1994年   48篇
  1993年   50篇
  1992年   30篇
  1991年   27篇
  1990年   27篇
  1989年   17篇
  1988年   17篇
  1987年   14篇
  1986年   8篇
  1985年   11篇
  1984年   8篇
  1983年   7篇
  1981年   5篇
  1980年   8篇
  1976年   4篇
  1975年   5篇
  1965年   3篇
  1954年   5篇
  1951年   2篇
  1948年   2篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
931.
Mangakino, the oldest rhyolitic caldera centre delineated in the Taupo Volcanic Zone of New Zealand, generated two very large (super-sized) ignimbrite eruptions, the 1.21 ± 0.04 Ma >500 km3 Ongatiti and ~1.0 Ma ~1,200 km3 Kidnappers events, the latter of which was followed after a short period of erosion by the ~200 km3 Rocky Hill eruption. We present U/Pb ages and trace-element analyses on zircons from pumice clasts from these three eruptions by Secondary Ion Mass Spectrometry (SIMS) using SHRIMP-RG instruments to illustrate the evolution of the respective magmatic systems. U–Pb age spectra from the Ongatiti imply growth of the magmatic system over ~250 kyr, with a peak of crystallisation around 1.32 Ma, ~100 kyr prior to eruption. The zircons are inferred to have then remained stable in a mush with little crystallisation and/or dissolution before later rejuvenation of the system at the lead-in to eruption. The paired Kidnappers and Rocky Hill eruptions have U–Pb zircon ages and geochemical signatures that suggest they were products of a common system grown over ~200 kyr. The Kidnappers and Rocky Hill samples show similar weakly bimodal age spectra, with peaks at 1.1 and 1.0 Ma, suggesting that an inherited antecrystic population was augmented by crystals grown at ages within uncertainty of the eruption age. In the Kidnappers, this younger age peak is dominantly seen in needle-shaped low U grains with aspect ratios of up to 18. In all three deposits, zircon cores show larger ranges and higher absolute concentrations of trace elements than zircon rims, consistent with zircon crystallisation from evolving melts undergoing crystal fractionation involving plagioclase and amphibole. Abundances and ratios of many trace elements frequently show variations between different sectors within single grains, even where there is no visible sector zoning in cathodoluminescence (CL) imaging. Substitution mechanisms, as reflected in the molar (Sc + Y + REE3+)/P ratio, differ in the same growth zone between the sides (along a-axis and b-axis: values approaching 1.0) and tips (c-axis: values between 1.5 and 5.0) of single crystals. These observations have implications for the use of zircons for tracking magmatic processes, particularly in techniques where CL zonation within crystals is not assessed and small analytical spot sizes cannot be achieved. These observations also limit applicability of the widely used Ti-in-zircon thermometer. The age spectra for the Ongatiti and Kidnappers/Rocky Hill samples indicate that both magmatic systems were newly built in the time-breaks after respective previous large eruptions from Mangakino. Trace element variations defining three-component mixing suggest that zircons, sourced from multiple melts, contributed to the population in each system.  相似文献   
932.
The ~1,000 km3 Carpenter Ridge Tuff (CRT), erupted at 27.55 Ma during the mid-tertiary ignimbrite flare-up in the western USA, is among the largest known strongly zoned ash-flow tuffs. It consists primarily of densely welded crystal-poor rhyolite with a pronounced, highly evolved chemical signature (high Rb/Sr, low Ba, Zr, Eu), but thickly ponded intracaldera CRT is capped by a more crystal-rich, less silicic facies. In the outflow ignimbrite, this upper zone is defined mainly by densely welded crystal-rich juvenile clasts of trachydacite composition, with higher Fe–Ti oxide temperatures, and is characterized by extremely high Ba (to 7,500 ppm), Zr, Sr, and positive Eu anomalies. Rare mafic clasts (51–53 wt% SiO2) with Ba contents to 4,000–5,000 ppm and positive Eu anomalies are also present. Much of the major and trace-element variations in the CRT juvenile clasts can be reproduced via in situ differentiation by interstitial melt extraction from a crystal-rich, upper-crustal mush zone, with the trachydacite, crystal-rich clasts representing the remobilized crystal cumulate left behind by the melt extraction process. Late recharge events, represented by the rare mafic clasts and high-Al amphiboles in some samples, mixed in with parts of the crystal cumulate and generated additional scatter in the whole-rock data. Recharge was important in thermally remobilizing the silicic crystal cumulate by partially melting the near-solidus phases, as supported by: (1) ubiquitous wormy/sieve textures and reverse zoning patterns in feldspars and biotites, (2) absence of quartz in this very silicic unit stored at depths of >4–5 km, and (3) heterogeneous melt compositions in the trachydacite fiamme and mafic clasts, particularly in Ba, indicating local enrichment of this element due mostly to sanidine and biotite melting. The injection of hot, juvenile magma into the upper-crustal cumulate also imparted the observed thermal gradient to the deposits and the mixing overprint that partly masks the in situ differentiation process. The CRT provides a particularly clear perspective on processes of in situ crystal-liquid separation into a lower crystal-rich zone and an upper eruptible cap, which appears common in incrementally built upper-crustal magma reservoirs of high-flux magmatic provinces.  相似文献   
933.
Vanadium occurs in multiple valence states in nature, whereas Nb is exclusively pentavalent. Both are compatible in rutile, but the relationship of V–Nb partitioning and dependence on oxygen fugacity (expressed as fO2) has not yet been systematically investigated. We acquired trace-element concentrations on rutile grains (n = 86) in nine eclogitic samples from the Dabie-Sulu orogenic belt by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) and combined them with published results in order to assess the direct and indirect effects of oxygen fugacity on the partitioning of V and Nb into rutile. A well-defined negative correlation between Nb (7–1,200 ppm) and V concentrations (50–3,200 ppm) was found, documenting a competitive relationship in the rutile crystal that does not appear to be controlled by bulk rock or mineral compositions. Based on the published relationship of RtDV and V valence with ?QFM, we suggest that the priority order of V incorporation into rutile is V4+ > V3+ > V5+. The inferred Nb–V competitive relationship in rutile from the Dabie-Sulu orogenic belt could be explained by decreasing fO2 due to dehydration reactions involving loss of oxidizing fluids during continental subduction: The increased proportion of V3+ (expressed as V3+/∑V) and attendant decrease in RtDV is suggested to lead to an increase in rutile lattice sites available for Nb5+. A similar effect may be observed under more oxidizing conditions. When V5+/∑V increases, RtDV shows a dramatic decline and Nb concentration increases considerably. This is possibly documented by rutile in highly metasomatized and oxidized MARID-type (MARID: mica–amphibole–rutile–ilmenite–diopside) mantle xenoliths from the Kaapvaal craton, which also show a negative V–Nb covariation. In addition, their Nb/Ta covaries with V concentrations: For V concentrations <1,250 ppm, Nb/Ta ranges between 35 and 45, whereas for V > 1,250 ppm, Nb/Ta is considerably lower (5–15). This relationship is mainly controlled by a change in Nb concentrations, suggesting that the indirect dependence of RtDNb on fO2, which is not mirrored in RtDTa, can exert considerable influence on rutile Nb–Ta fractionation.  相似文献   
934.
The Mikabu and Sorachi–Yezo belts comprise Jurassic ophiolitic complexes in Japan, where abundant basaltic to picritic rocks occur as lavas and hyaloclastite blocks. In the studied northern Hamamatsu and Dodaira areas of the Mikabu belt, these rocks are divided into two geochemical types, namely depleted (D-) and enriched (E-) types. In addition, highly enriched (HE-) type has been reported from other areas in literature. The D-type picrites contain highly magnesian relic olivine phenocrysts up to Fo93.5, and their Fo–NiO trend indicates fractional crystallization from a high-MgO primary magma. The MgO content is calculated as high as 25 wt%, indicating mantle melting at unusually high potential temperature (T p) up to 1,650 °C. The E-type rocks represent the enrichment in Fe and LREE and the depletion in Mg, Al and HREE relative to the D-type rocks. These chemical characteristics are in good accordance with those of melts from garnet pyroxenite melting. Volcanics in the Sorachi–Yezo belts can be divided into the same types as the Mikabu belt, and the D-type picrites with magnesian olivines also show lines of evidence for production from high T p mantle. Evidence for the high T p mantle and geochemical similarities with high-Mg picrites and komatiites from oceanic and continental large igneous provinces (LIPs) indicate that the Mikabu and Sorachi–Yezo belts are accreted oceanic LIPs that were formed from hot large mantle plumes in the Late Jurassic Pacific Ocean. The E- and D-type rocks were formed as magmas generated by garnet pyroxenite melting at an early stage of LIP magmatism and by depleted peridotite melting at the later stage, respectively. The Mikabu belt characteristically bears abundant ultramafic cumulates, which could have been formed by crystal accumulation from a primary magma generated from Fe-rich peridotite mantle source, and the HE-type magma were produced by low degrees partial melting of garnet pyroxenite source. They should have been formed later and in lower temperatures than the E- and D-type rocks. The Mikabu and Sorachi Plateaus were formed in a low-latitude region of the Late Jurassic Pacific Ocean possibly near a subduction zone, partially experienced high P/T metamorphism during subduction, and then uplifted in association with (or without, in case of Mikabu) the supra-subduction zone ophiolite. The Mikabu and Sorachi Plateaus may be the Late Jurassic oceanic LIPs that could have been formed in brotherhood with the Shatsky Rise.  相似文献   
935.
Groundmass perovskite has been dated by LA-ICPMS in 135 kimberlites and related rocks from 110 localities across southern Africa. Sr and/or Nd isotopes have been analysed by LA-MC-ICPMS in a subset of these and integrated with published data. The age distribution shows peaks at 1,600–1,800, 1,000–1,200, 500–800 and 50–130 Ma. The major “bloom” of Group I kimberlites at ca 90 ± 10 Ma was preceded by a slow build-up in magmatic activity from ca 180 Ma. The main pulse of Group II kimberlites at 120–130 Ma was a distinct episode within this build-up. Comparison of the isotopic data with seismic tomography images suggests that metasomatized subcontinental lithospheric mantle (SCLM) with very low ε Nd and high 87Sr/86Sr, (the isotopic signature of Group II kimberlites) was focused in low-Vs zones along translithospheric structures. Such metasomatized zones existed as early as 1,800 Ma, but were only sporadically tapped until the magmatic build-up began at ca 180 Ma, and contributed little to the kimberlitic magmas after ca 110 Ma. We suggest that these metasomatized volumes resided in the deep SCLM and that their low-melting point components were “burned off” by rising temperatures, presumably during an asthenospheric upwelling that led to SCLM thinning and a rise in the ambient geotherm between 120 and 90 Ma. The younger Group I kimberlites therefore rarely interacted with such SCLM, but had improved access to shallower volumes of differently metasomatized, ancient SCLM with low 87Sr/86Sr and intermediate ε Nd (0–5). The kimberlite compositions therefore reflect the evolution of the SCLM of southern Africa, with metasomatic-enrichment events from as early as 1.8 Ga, through a major thermal and compositional change at ca 110 Ma, and the major kimberlite “bloom” around 90 Ma.  相似文献   
936.
陈雪 《地质与勘探》2014,50(Z1):1413-1417
建立了一种利用New Wave UP 213 nm激光和ThermoFisher X Series2四极杆等离子体质谱法直接测定硅酸盐矿物中54种元素的分析方法。该方法以40Ca为内标、玻璃标准参考物质NIST SRM 610为外标,通过调节载气流量、激光频率、激光能量、激光剥蚀斑径降低元素分馏效应,并对NIST SRM 612进行测定,测定结果满足分析要求,54种元素的相对标准偏差大都低于10%,可应用于地质学分析研究。  相似文献   
937.
When rock samples are loaded until macroscopic fractures develop, the failure process can be divided into several stages based on axial and lateral strain responses or the acoustic emission sequence during uniaxial compression tests. Several stress thresholds may be identified: the crack closure stress σ cc, crack initiation stress σ ci, crack damage stress σ cd, and uniaxial compressive strength σ ucs; these may be used as a warning indicator for rock rupture. We investigated the crack damage stress σ cd, its threshold, and a possible relationship between σ cd and the uniaxial compressive strength. The σ cd of different rock types were compiled from previous studies based on uniaxial compression tests. The results showed that the overall averages and standard deviations of σ cd ucs for igneous, metamorphic, and sedimentary rocks were ~0.78 (±0.11), ~0.85 (±0.11), and ~0.73 (±0.18), respectively. There were no significant differences in σ cd ucs between the different rock types, except that the sedimentary rock had a slightly larger standard deviation attributed to the variation of porosity in the samples, while the metamorphic rock had higher average σ cd ucs resulting from the small statistical sample size. By excluding the higher-porosity (>10 %) rock samples, the averages and standard deviations of σ cd ucs for igneous, metamorphic, and sedimentary rocks were ~0.78 (±0.09), ~0.85 (±0.09), and ~0.78 (±0.11), respectively. The results imply that the rock origin process (i.e., igneous, metamorphic, and sedimentary) has a minimal effect on σ cd ucs. The ratio σ cd/σ ucs could be an essential intrinsic property for low-porosity rocks, which could be used in rock engineering for predicting the failure process.  相似文献   
938.
During slope excavation, high stresses can become concentrated in the rock mass because of stress redistribution. Failure of the rock mass creates an excavation-damaged zone (EDZ) in the slope. The damage reduces the acoustic wave velocity in the rock mass. Results of field tests measuring acoustic wave velocity at the Jinping I Hydropower Station are used here to study the EDZ in a tall rock slope. Two acoustic testing methods were adopted in the field tests: single-hole acoustic testing (SAT) and cross-hole acoustic testing (CAT). The acoustic wave velocity was lower in the EDZ, and the depth of the EDZ increased with decreasing slope elevation. Statistical analysis shows that the acoustic wave velocity obtained by the SAT method is larger than that obtained by the CAT method, and the relative difference between the SAT- and CAT-derived velocities is lower for a high quality rock mass than for a low quality rock mass. The integrity ratio and severity of damage can also be determined by acoustic wave velocity test results, revealing that the integrity ratio and elastic modulus of a rock mass are reduced in the EDZ.  相似文献   
939.
研究区位于酒东盆地东北缘红山地区。通过对下白垩统新民堡群后生氧化改造作用的研究,认为灰白色弱氧化、强水解蚀变带是层间氧化带的一部分。铁和有机质是沉积岩中常见的色素,当含氧水进入目的层砂体时,砂体中的有机质、低价铁(Fe2+)等化合物被氧化,导致岩石褪色;同时氧化作用导致砂岩中长石水解,形成以高岭石为主的白色黏土矿物,使岩石增白。增白与褪色的双重作用是砂岩总体上变白的重要原因,其所形成的灰白色蚀变岩位于强氧化的紫红色-黄色蚀变亚带与灰色原生岩石带之间的一定范围内。铀矿化(体)产在弱氧化、强水解灰白色砂岩与原生灰色砂岩界面附近偏灰色岩石一侧[1-2]。灰白色蚀变带与铀成矿关系密切,可作为区域性白垩系砂岩型铀矿的找矿标志之一。  相似文献   
940.
平泉地区本溪组和刘家沟组厘定   总被引:1,自引:0,他引:1       下载免费PDF全文
1:20万平泉幅和1:5万杨树岭幅区域地质图将平泉地区大吉口和南台剖面不整合于马家沟组之上的本溪组地层划为刘家沟组。文章对平泉地区各剖面本溪组进行了岩石地层对比和碎屑锆石LA—ICP—MS U—Pb年龄测定,发现大吉口和南台剖面与山弯子本溪组具有相似的岩相组合、砾石成分和碎屑锆石年龄组成,在此基础上提出位于不整合面之上的是本溪组,而非刘家沟组的新认识。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号