首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   3篇
  国内免费   14篇
大气科学   3篇
地球物理   18篇
地质学   68篇
自然地理   7篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   1篇
  2010年   5篇
  2009年   1篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   3篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1967年   2篇
  1964年   1篇
  1962年   1篇
  1960年   2篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
91.
The Palmer Granite is a small, regionally conformable body whichoccurs in association with migmatites and high-grade schistsand gneisses in the metamorphic belt flanking the eastern MountLofty Ranges of South Australia. Seven new rock analyses, including some trace element data,are presented. The normative percentages of quartz-orthoclase-albite,and orthoclase-albite-anorthite fall near or within the low-temperaturetroughs for the corresponding synthetic systems and hence itis probable that the granite was produced by crystal-liquidequilibrium. Mineral data on biotites (2 analyses) and potassium feldspars(7 analyses) indicate disequilibrium with the envelope rocks. Initial S7Sr/86Sr ratios for the granite specimens average 0-708,whereas the initial 87Sr/86Sr ratios of the analysed countryrocks are all higher than this. The age is 49015 m.y. Chemical, isotopic, and mineralogical data rule out the possibilityof either granitization, partial melting, or complete meltingof country rocks similar to those analysed. The granite is consideredto have been produced at greater depths. The absence of superimposedcontact aureoles, together with macroscopic and microscopicfabric data, indicates that the Palmer Granite was intrudedduring metamorphism and that it cooled, and in part recrystallized,in the same stress field as that which produced the fabric ofthe country rocks. The metamorphic textures are a result ofthis recrystallization  相似文献   
92.
The Djado Basin (Niger) was located beneath the inner part of the Late Ordovician ice sheet. The Felar‐Felar Formation consists mainly of glaciomarine deposits, associated with the major ice sheet recession within the glaciation, and is bounded by two glacial unconformities. Structures corresponding to sandstone ridges are found within the Felar‐Felar Formation. Sandstone ridges are several metres high, about 10 m wide and hundreds of metres long. These structures are organized in extensive anastomosed to sub‐polygonal networks. The association of sandstone ridge networks with the later glacial unconformity and with other glacial evidence suggests sub‐glacial conditions for their origin. Sandstone ridge sedimentological characteristics indicate that sandstone ridges result from the scouring of the Felar‐Felar Formation by sub‐glacial, turbulent and pressurized meltwater; then sub‐glacial cavities were infilled with sand derived from glacial abrasion. Sandstone ridge networks are comparable with tunnel channels and document unusual drainage structures of the inner part of the palaeo‐ice sheet.  相似文献   
93.
Cordierite–orthoamphibole gneisses and rocks of similar composition commonly contain low‐variance mineral assemblages that can provide useful information about the metamorphic evolution of a terrane. New calculated petrogenetic grids and pseudosections are presented in the FeO–MgO–Al2O3–SiO2–H2O (FMASH), Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) and Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO) chemical systems to investigate quantitatively the phase relations in these rocks. Although the bulk compositions of cordierite–orthoamphibole gneisses are close to FMASH, calculations in this system do not adequately account for the observed range of mineral assemblages. Calculations in NCKFMASH and NCKFMASHTO highlight the role of minor constituents such as Ca, Na and Fe3+ in the mineral assemblage evolution of such rocks and these systems are more appropriate for interpreting the evolution of natural examples.  相似文献   
94.
A recent thermodynamic model for the Na–Ca clinoamphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O (NCFMASHO), is improved, and extended to include cummingtonite–grunerite and the orthoamphiboles, anthophyllite and gedrite. The clinoamphibole model in NCMASH is adopted, but the extension into the FeO- and Fe2O3-bearing systems is revised to provide thermodynamic consistency and better agreement with natural assemblage data. The new model involves order–disorder of Fe–Mg between the M2, M13 and M4 sites in the amphibole structure, calibrated using the experimental data on site distributions in cummingtonite–grunerite. In the independent set of end-members used to represent the thermodynamics, grunerite (rather than ferroactinolite) is used for FeO, with two ordered Fe–Mg end-members, and magnesioriebeckite (rather than ferritschermakite) is used for Fe2O3. Natural assemblage data for coexisting clinoamphiboles are used to constrain the interaction energies between the various amphibole end-members. For orthamphibole, the assumption is made that the site distributions and the non-ideal formulation is the same as for clinoamphibole. The data set end-members anthophyllite, ferroanthophyllite and gedrite, are used; for the others, they are based on the clinoamphibole end-members, with the necessary adjustments to their enthalpies constrained by natural assemblage data for coexisting clino- and orthoamphiboles. The efficacy of the models is illustrated with P – T grids and various pseudosections, with a particular emphasis on the prediction of mineral assemblages in ferric-bearing systems.  相似文献   
95.
安徽庐枞盆地酸性蚀变岩帽地质地球化学特征研究   总被引:1,自引:4,他引:1  
酸性蚀变岩帽是浅成低温热液系统演化的产物,形成于酸性高氧化性流体的化学条件下;在高硫化型浅成低温热液金矿床中广泛发育,是该类矿床的显著识别特征。通过对酸性蚀变岩帽的野外地质特征、矿物共生组合和地球化学特征研究,能较好阐明浅成低温成矿热液系统的特征、性质、发生和发展演化及成矿作用过程。庐枞矿集区是长江中下游成矿带重要的矿集区之一,盆地内广泛发育以明矾石为特征蚀变矿物的酸性蚀变岩帽,面积超过30km~2,指示盆地内高硫化浅成低温热液系统的存在。目前为止,前期工作主要针对明矾石矿床地质特征和明矾石资源储量进行,该酸性蚀变岩帽的地质地球化学特征研究尚未开展。本次工作通过对酸性蚀变岩帽系统的野外采样、全岩地球化学分析和短波红外光谱测试分析技术(PNIRS测试)分析,确定其主要赋存在砖桥组火山岩中,组成矿物为石英、明矾石、高岭石、地开石,此外有少量绢云母、伊利石、珍珠陶土、叶蜡石、褐铁矿,极少数的叶腊石和黄钾铁矾等,在钻孔深部存在浸染状和半自形粒状黄铁矿。由于受到地表风化剥蚀和不同热热中心的影响,水平方向从矾山明矾石矿床向外围发育石英+明矾石带、石英+高岭石/地开石+明矾石带、石英+高岭石/地开石带、硅化带以及最外围的泥质带即高岭石±绢云母±伊利石带。根据酸性蚀变岩帽的矿物组合和主量元素特征,可将其分为三类:硅质蚀变岩、明矾石蚀变岩和粘土蚀变岩。硅质蚀变岩中SiO_2含量发生明显的富集作用,其余主量元素(K_2O、Na_2O、Al_2O_3、Fe_2O_3、P_2O5)含量显著降低;明矾石蚀变岩和粘土蚀变岩具有相似的地球化学特征,SiO_2、Al_2O_3、Fe_2O_3、P_2O_5元素含量范围变大,K_2O和Na_2O含量降低,且Na_2O降低更加明显;而钛为不活泼元素,在岩石发生蚀变过程中TiO_2含量变化很小。矾山地区的酸性蚀变岩帽的产状、蚀变类型、地球化学特征受构造和地层的双重控制。  相似文献   
96.
Six holes were drilled to depths of 30–69 m in the shallow lagoon of Aitutaki in the southern Cook Islands. One hole encountered pervasively dolomitized reef limestones at 36 m subbottom depth, which extended to the base of the drilled section at 69·3 m. This hole was drilled near the inner edge of the present barrier reef flat on the flank of a seismically defined subsurface ridge. Both the morphology and biofacies indicate that this ridge may represent an outer reef crest. Mineralogy, porosity and cementation change in concert downhole through three zones. Zone 1, 0–9 m, is composed of primary skeletal aragonite and calcite with minor void-filling aragonite and magnesian calcite cement of marine phreatic origin. Zone 2, 9–36 m, is composed of replacement calcite and calcite cement infilling intergranular, intragranular, mouldic and vuggy porosity. Stable isotopes (mean δ18O=—5·4‰ PDB for carbonate; δD =—50‰ SMOW for fluid inclusions) support the petrographic evidence indicating that sparry calcite cements formed in predominantly freshwater. Carbon isotope values of —4·0 to —11·0‰ for calcite indicate that organic matter and seawater were the sources of carbon. Zone 3, 36–69·3 m, is composed of replacement dolostone, consisting of protodolomite with, on average, 7 mol% excess CaCO3 and broad and weak ordering X-ray reflections at 2·41 and 2·54 A. The fine-scale replacement of skeletal grains and freshwater void-filling cements by dolomite did not significantly reduce porosity. Stable isotopes (mean δ18O=+2·6‰0 PDB for dolomite; maximum δD =—27‰ SMOW for fluid inclusions) and chemical composition indicate that the dolomite probably formed from seawater, although formation in the lower part of a mixed freshwater-seawater zone, with up to 40% freshwater contribution, cannot be completely ruled out. The carbon (δ13C=2·7‰) and magnesium were derived from seawater. Low-temperature hydrothermal iron hydroxides and associated transition metals occur in void space in several narrow stratigraphic intervals in the limestone section that was replaced by dolomite. The entire section of dolomite is also enriched in these transition metals. The metals dispersed throughout the dolostone section were introduced at the time of dolomitization by a different and later episode of hydrothermal circulation than the one(s) that produced the localized deposits near the base of the section. The primary reef framework is considered to have been deposited during several highstands of sea level. Following partial to local recrystallization of the limestone, a single episode of dolomitization occurred. Both tidal and thermal pumping drove large quantities of seawater through the porous rocks and perhaps maintained a wide mixing zone. However, the isotopic, geochemical and petrographic data do not clearly indicate the extent of seawater mixing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号