首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   3篇
  国内免费   15篇
大气科学   3篇
地球物理   20篇
地质学   69篇
自然地理   7篇
  2024年   1篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   1篇
  2010年   5篇
  2009年   1篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1992年   3篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1967年   2篇
  1964年   1篇
  1962年   1篇
  1960年   2篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
31.
Fifty scapolites have been analysed spectrographically for numerouselements. Average concentrations (p.p.m.) were as follows: B25, Be 9-3, Ga 33, Ti 82, Li 56, Cu 4-4, Zr 59, Mn 57, Sr 1,800,Pb 45, Ba 120, Rb 20. The following were seldom or never detected:Cr, Ni, Co, Mo, Sn, V, Sc, Ag, Y, La. The major elements Ca,Na, K were also determined. The distribution of the trace elementscan be explained by isomorphous substitution, but no detailedcorrelation of trace elements with each other or with majorelements was found. Refractive indices were determined and the relation betweenaverage index and per cent Me was examined: correlation waspoor, which may in part be attributed to analytical error. Examination of scapolite parageneses shows that scapolite characteristicallyoccurs in the upper amphibolite facies or the pyroxene hornfelsfacies: it is not restricted to these and may occur in any faciesfrom zeolitic to granulitic and in any hornfels facies. Theelements generally concentrated in scapolite include Ca, Na,C, Cl, S, H, B, Be, Li, Sr, Pb. The presence of C, Cl, S, Htestify to genesis in the presence of high partial pressureof CO2, Cl2, SO3, H2O (or related compounds), that is in pneumatolytic,pegmatitic, or hydrothermal environments. The concentrationof B, Be, Li can also be attributed to these conditions. The source of the elements concentrated in scapolite must inpart be common rocks. In a limited contact zone, the nearbymagma supplied some elements, but where regional scapolitizationhas taken place the presence of magma is less clear. Many commonrocks or rock series contain all the necessary constituents,but some particular conjunction of conditions is necessary forscapolite to form, or it would be more common.  相似文献   
32.
Large garnet poikiloblasts hosted by leucosome in metapelitic gneiss from Broken Hill reflect complex mineral–melt relationships. The spatial relationship between the leucosomes and the garnet poikiloblasts implies that the growth of garnet was strongly linked to the production of melt. The apparent difficulty of garnet to nucleate a large number of grains during the prograde breakdown of coexisting biotite and sillimanite led to the spatial focussing of melting reactions around the few garnet nuclei that formed. Continued reaction of biotite and sillimanite required diffusion of elements from where minerals were reacting to sites of garnet growth. This diffusion was driven by chemical potential gradients between garnet‐bearing and garnet‐absent parts of the rock. As a consequence, melt and peritectic K‐feldspar also preferentially formed around the garnet. The diffusion of elements led to the chemical partitioning of the rock within an overall context in which equilibrium may have been approached. Thus, the garnet‐bearing leucosomes record in situ melt formation around garnet porphyroblasts rather than centimetre‐scale physical melt migration and segregation. The near complete preservation of the high‐grade assemblages in the mesosome and leucosome is consistent with substantial melt loss. Interconnected networks between garnet‐rich leucosomes provide the most likely pathway for melt migration. Decimetre‐scale, coarse‐grained, garnet‐poor leucosomes may represent areas of melt flux through a large‐scale melt transfer network.  相似文献   
33.
34.
Geometrical relationships involving inclusions and partial inclusions in metamorphic microstructures can be inadequate for inferring an order of crystallization and hence a metamorphic reaction. Unique spatial and/or chemical relationships need to be defined for mineral inclusions, in the context of a reference paragenesis, commonly the matrix assemblage. Corona microstructures are reliable indicators of metamorphic reactions, but require considerable care when used to infer reactions or changes in P–T conditions, owing to kinetic problems, as well as to changes in the effective reaction volume during changes across relatively broad P–T stability fields of assemblages. Mineral equilibria models, most commonly implemented through P–T pseudosections, may allow the order in which different minerals become stable along a given P–T path to be inferred. However, the order in which two minerals become stable may be different from the order in which two grains of these minerals nucleate. Furthermore, such diagrams cannot make predictions about which minerals will form porphyroblasts and which minerals will form inclusions in porphyroblasts. An evaluation of three examples from the Australian Proterozoic shows that modelling, in combination with inclusion‐host relationships, is a powerful tool for understanding the metamorphic evolution of a rock, but involves considerable uncertainty.  相似文献   
35.
Evaluating pressure–temperature (PT) conditions through mineral equilibria modelling within an amphibolite facies polymetamorphic terrane requires knowledge of the fluid content of the rocks. The Archean‐Palaeoproterozoic basement rocks of the Ruker Province, East Antarctica, preserve evidence of three metamorphic events (M1–M3). Of particular interest is the M3 event, which is constrained to the early Palaeozoic (c. 550–480 Ma). Evaluation of the tectonic setting during this time is important because the Ruker Province is located within a critical region with respect to models of Gondwana assembly. Structural evidence of the early Palaeozoic event is preserved as large (up to ~500 m wide) high strain zones that cut the orthogneiss‐metasedimentary basement (Tingey Complex) of the Ruker Province. Rocks within these zones have been thoroughly recrystallized and preserve a dominant shear fabric and M3 mineral assemblages that formed at PT conditions of 4.0–5.2 kbar and 565–640 °C. Distal to these zones, rocks preserve more complex petrographic relationships with S1 and S2 foliations, being incompletely overgrown by M3 retrograde assemblages. We show that the mineral assemblages preserved during the M3 event are highly dependent on the availability of fluid H2O, which is strongly influenced by the structural setting (i.e. proximity to the high‐strain zones). PT structural and fluid flow constraints support a model of basin inversion during early Palaeozoic crustal rejuvenation in the Ruker Province.  相似文献   
36.
地震资料处理中的聚束滤波方法   总被引:33,自引:11,他引:22       下载免费PDF全文
聚束滤波方法的基本原理,包括信号与噪音模型、设计准则和所获得的聚束滤波器.本文所用的自适应聚束滤波器是根据具有参数化的动校正量、振幅及相位随偏移距变化(MVO、AVO及PVO)的一次反射和多次反射信号模型而设计的.但在实际应用中PVO通常不能得到证实.结果分析能为进一步的从AVO及PVO获取岩石类型信息的专题研究提供资料.人工合成资料的例子给出了参数化的自适应聚束滤波的实施细节和所设计滤波器的响应特性.实际资料的例子表明数据自适应聚束滤波在叠前共中点道集地震多次波消除上比Radon变换方法更灵活、有效.类似于其它叠前处理过程,自适应聚束滤波的优越性在信噪比较高的资料上体现得最为明显.  相似文献   
37.
A minor amount (ca 1 wt%) of amorphous silica cement sourced from volcanic glass inhibits consolidation of hemipelagic sediment approaching the Nankai Trough subduction zone throughout the Shikoku Basin. The distribution and nature of the cement were examined via secondary and backscattered electron imaging. The amorphous silica occurs as altered material in contact with volcanic glass, coating grains (including grain contacts) and filling pores. Based on chemical and petrographic evidence, the cement is probably sourced from volcanic glass; this is in contrast to a previous suggestion that this silica cement is sourced dominantly from biogenic silica. Amorphous silica sourced from disseminated volcanic glass shards has the ability to form a thin coating on clay‐dominated sediment throughout the Shikoku Basin. Measured amorphous silica content in hemipelagic sediments suggests that the cementing process is active throughout the Shikoku Basin (at sites separated by >500 km). The cementation process may occur in other locations where sediment containing hydrated disseminated volcanic glass is buried sufficiently for heat to facilitate alteration (i.e. Central America, Cascadia and the Gulf of Alaska).  相似文献   
38.
39.
The gases released by some large volcanic eruptions in history (e.g. Santorini in the seventeenth century BC) have led to famine. Similar events are likely in the future but could be made worse by the huge quantities of material already in the atmosphere as a result of industrial and domestic Processes.  相似文献   
40.
Proterozoic granulite facies gneisses in MacRobertson Land, east Antarctica, are cut by numerous D5 mylonite-ultramylonite zones of probable Cambrian age. In garnet-absent mafic two-pyroxene gneisses and garnet-bearing charnockitic orthogneisses, the mylonite-ultramylonite zones are characterized by the growth of garnet at the expense of ilmenite, pyroxene and plagioclase. Textures within each mylonite zone can vary from protomylonitic to ultramylonitic. A range of mineral textures involving M5 garnet is developed corresponding to variations in deformation intensity. In protomylonites, garnet occurs as coronas on orthopyroxene-plagioclase and ilmenite-plagioclase boundaries, and as overgrowths on earlier garnet. In ultramylonites, fine-grained orthopyroxene-plagioclase-garnet ± quartz ± clinopyroxene intergrowths and poikilitic garnet are common. Garnet growth in all shear zones is accompanied by shifts in the compositions of neoblastic minerals occurring with garnet, consistent with local chemical equilibrium having been attained during recrystallization. Mylonitization is inferred to have occurred at P ∼ 6.5 kbar. Temperature estimates for M5 vary between 550 and 797 C, which may reflect variations and uncertainties associated with the calibrations used and/or partial re-equilibration during cooling. The presence of post-tectonic, coronate garnet in some mylonite zones indicates that garnet continued to form exclusively in the mylonite zones after movement had ceased and is interpreted to reflect the effects of localized strain heating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号