首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84964篇
  免费   1432篇
  国内免费   811篇
测绘学   2187篇
大气科学   6061篇
地球物理   16363篇
地质学   30009篇
海洋学   7783篇
天文学   19868篇
综合类   246篇
自然地理   4690篇
  2022年   474篇
  2021年   868篇
  2020年   949篇
  2019年   1024篇
  2018年   2218篇
  2017年   2066篇
  2016年   2631篇
  2015年   1442篇
  2014年   2458篇
  2013年   4437篇
  2012年   2637篇
  2011年   3523篇
  2010年   3142篇
  2009年   4083篇
  2008年   3483篇
  2007年   3578篇
  2006年   3317篇
  2005年   2589篇
  2004年   2596篇
  2003年   2450篇
  2002年   2348篇
  2001年   2091篇
  2000年   1941篇
  1999年   1634篇
  1998年   1675篇
  1997年   1588篇
  1996年   1366篇
  1995年   1307篇
  1994年   1174篇
  1993年   1076篇
  1992年   1022篇
  1991年   999篇
  1990年   1038篇
  1989年   918篇
  1988年   901篇
  1987年   995篇
  1986年   902篇
  1985年   1125篇
  1984年   1230篇
  1983年   1102篇
  1982年   1010篇
  1981年   991篇
  1980年   879篇
  1979年   868篇
  1978年   849篇
  1977年   752篇
  1976年   684篇
  1975年   684篇
  1974年   644篇
  1973年   692篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
681.
The investigation of melt inclusions in the minerals of volcanic rocks from the massive sulfide deposits of Siberia and the Urals revealed some specific features in the development of their magmatic ore systems. It was shown that the petrochemical and rare earth element compositions of melt inclusions reflect the geodynamic conditions of their formation: island arc conditions for the massive sulfide deposits of Rudny Altai, eastern Tuva, and the Salair Range and a back arc basin environment for the Yaman-Kasy deposit. The silicic melts of inclusions from the volcanic rocks of massive sulfide deposits show some specific features with respect to the contents of volatile components. In all of the ore deposits studied, fluorine content was always low (0.03–0.08 wt %), whereas chlorine content (0.13–0.28 wt %) was higher than the average value for silicic melts (0.17 wt %). There is a strong differentiation of water content in melt inclusions, both between deposits and between various volcanics from a single deposit. Ore-bearing melts show the highest water contents of 3.34–4.07 wt %. High Cu contents in the silicic melts of the Yubileinoe and Kyzyl-Tashtyg deposits (up to 7118 and 3228 ppm, respectively) may indicate the affinity of some ore components to particular silicic magmas. This is supported by the elevated contents of Cu in the porphyry Cu deposits of Romania (Valea Morii), Mongolia (Bayan Ula), and Bolivia. On the other hand, the silicic melts of inclusions from the molybdenum-uranium deposit of the Strel’tsovka ore field show high contents of another group of ore components (U and F).  相似文献   
682.
Melt inclusions were studied in chrome diopside from the Inagli deposit of gemstones in the Inagli massif of alkaline ultrabasic rocks of potassic affinity in the northwestern Aldan shield, Yakutia, Russia. The chrome diopside is highly transparent and has an intense green color. Its Cr2O3 content varies from 0.13 to 0.75 wt %. Primary and primary-secondary polyphase inclusions in chrome diopside are dominated by crystal phases (80–90 vol %) and contain aqueous solution and a gas phase. Using electron microprobe analysis and Raman spectroscopy, the following crystalline phases were identified. Silicate minerals are represented by potassium feldspar, pectolite [NaCa2Si3O8(OH)], and phlogopite. The most abundant minerals in the majority of inclusions are sulfates: glaserite (aphthitalite) [K3Na(SO4)2], glauberite [Na2Ca(SO4)2], aluminum sulfate, anhydrite (CaSO4), gypsum (CaSO4 × 2H2O), barite (BaSO4), bloedite [Na2Mg(SO4)2 × 4H2O], thenardite (NaSO4), polyhalite [K2Ca2Mg(SO4)4 × 2H2O], arcanite (K2SO4), and celestite (SrSO4). In addition, apatite was detected in some inclusions. Chlorides are probably present among small crystalline phases, because some analyses of aggregates of silicate and sulfate minerals showed up to 0.19–10.3 wt % Cl. Hydrogen was identified in the gas phase of polyphase inclusions by Raman spectroscopy. The composition of melt from which the chrome diopside crystallized was calculated on the basis of the investigation of silicate melt inclusions. This melt contains 53.5 wt % SiO2, considerable amounts of CaO (16.3 wt %), K2O (7.9 wt %), Na2O (3.5 wt %), and SO3 (1.4 wt %) and moderate amounts of Al2O3 (7.5 wt %), MgO (5.8 wt %), FeO (1.1 wt %), and H2O (0.75 wt %). The content of Cr2O3 in the melt was 0.13 wt %. Many inclusions were homogenized at 770–850°C, when all of the crystals and the gas phase were dissolved. The material of inclusions heated up to the homogenization temperature became heterogeneous even during very fast quenching (two seconds) producing numerous small crystals. This fact implies that most of the inclusions contained a salt (rather than silicate) melt of sulfate-dominated composition. Such inclusions were formed from salt globules (with a density of about 2.5 g/cm3) occurring as an emulsion in the denser (2.6 g/cm3) silicate melt from which the chrome diopside crystallized.  相似文献   
683.
Petrological and geochemical data obtained on the Quaternary lavas of volcanoes at Spitsbergen Island indicate that the rocks were produced via the deep-seated crystallization of parental alkaline magmas at 8–10 kbar. The character of clinopyroxene enrichment in incompatible elements indicates that the mineral crystallized from more enriched melts than those inferred from the composition of the host lavas. These melts were close to the parental melts previously found as veinlets in mantle hyperbasite xenoliths in the lavas. According to the character of their enrichment in Pb and Sr radiogenic isotopes and depletion in Nd, the basalts from Spitsbergen Island define a single trend with the weakly enriched tholeiites of the Knipovich Ridge, a fact suggesting the closeness of the enriched sources beneath the continental margin of Spitsbergen and beneath the spreading zone. Magmatic activity at Spitsbergen was related to the evolution of the Norwegian-Greenland basin, which evolved in pulses according to the shift of the spreading axes. The most significant of the latter events took place in the Neogene, when the Knipovich Ridge obtained its modern position near the western boundary of Spitsbergen. Early in the course of the evolution, the emplacement of alkaline melts generated at Spitsbergen into the oceanic mantle could form the enriched mantle, which was later involved in the melting process beneath the spreading zone.  相似文献   
684.
685.
Serpentinites and talc-carbonate rocks of El Ideid-El Sodmein District (ISD), central Eastern Desert, Egypt, contain variably altered chrome-spinels. Back-scattered electron images and electron microprobe analyses of chrome-spinels and associated silicates are made to evaluate their textural and compositional variations with metamorphism. In most cases the chrome-spinel crystals are concentrically zoned with unaltered cores through transitional zone of ferritchromit to Cr-magnetite toward the rims. In talc-carbonate rocks chrome-spinels are extensively altered to Cr-magnetite. Compared to cores, the metamorphic rims are enriched in Cr# (0.83–1.0 vs. 0.58–0.63 for rims and cores, respectively) and impoverished in Mg# (0.05–0.29 vs. 0.57–0.63), due to Mg–Fe and Al(Cr)–Fe3+ exchange with the surrounding silicates during regional metamorphism rather than serpentinization process. Textural and compositional features of the chrome-spinels suggest transitional greenschist-amphibolite up to lower amphibolite facies metamorphism (at 500–600 °C), which is isofacial with the country rocks. The common preservation of unaltered chrome-spinel cores in the serpentinites, contrary to talc-carbonate rocks, implies that full equilibration has not been attained due to small metamorphic fluid–rock ratio. Microprobe analyses profile across a concentrically zoned grain confirms the presence of two compositional (miscibility?) gaps; one between chrome-spinel core and ferritchromit zone; and another one between ferritchromit zone and Cr-magnetite outer rim.Chrome-spinel cores do not appear to have re-equilibrated completely with the metamorphic spinel rims and surrounding silicates, indicating relic magmatic composition not affected by metamorphism. Core compositions suggest an ophiolitic origin and derivation by high degrees of melting of reduced, depleted harzburgite to dunite mantle peridotites in an oceanic supra-subduction zone (marginal-basin) tectonic environment.  相似文献   
686.
146Sm–142Nd and 147Sm–143Nd systematics were investigated in garnet inclusions in diamonds from Finsch (S. Africa) and Hadean zircons from Jack Hills (W. Australia) to assess the potential of these systems as recorders of early Earth evolution. The study of Finsch inclusions was conducted on a composite sample of 50 peridotitic pyropes with a Nd model age of 3.3 Ga. Analysis of the Jack Hills zircons was performed on 790 grains with ion microprobe 207Pb/206Pb spot ages from 3.95 to 4.19 Ga. Finsch pyropes yield 100 × ?142Nd = ? 6 ± 12 ppm, ?143Nd = ? 32.5, and 147Sm/144Nd = 0.1150. These results do not confirm previous claims for a 30 ppm 142Nd excess in South African cratonic mantle. The lack of a 142Nd anomaly in these inclusions suggests that isotopic heterogeneities created by early mantle differentiation were remixed at a very fine scale prior to isolation of the South African lithosphere. Alternatively, this result may indicate that only a fraction of the mantle experienced depletion during the first 400 Myr of its history. Analysis of the Jack Hills zircon composite yielded 100 × ?142Nd = 8 ± 10 ppm, ?143Nd = 45 ± 1, and 147Sm/144Nd = 0.5891. Back-calculation of this present-day ?143Nd yields an unrealistic estimate for the initial ?143Nd of ? 160 ?-units, clearly indicating post-crystallization disturbance of the 147Sm–143Nd system. Examination of 146,147Sm–142,143Nd data reveals that the Nd budget of the Jack Hills sample is dominated by non-radiogenic Nd, possibly contained in recrystallized zircon rims or secondary subsurface minerals. This secondary material is characterized by highly discordant U–Pb ages. Although the mass fraction of altered zircon is unlikely to exceed 5–10% of total sample, its high LREE content precludes a reliable evaluation of 146Sm–142Nd systematics in Jack Hills zircons.  相似文献   
687.
Deep dissolution affects great part of soluble rocks (e.g. gypsum and anhydrite) of the Western Italian Alps. The related superficial phenomena (sinkholes, gravity-induced processes and a local worsening of geomechanical rock properties) are not limited to typical karsts landscape and cause slope instability also affecting populated sites and infrastructures. The paper aims to describe general characteristic of dissolution phenomena, to interpret their conditioning factors and evolutionary stages and to assess possible hazards due to their superficial effects.The search for evidences of deep dissolution leads to the selection of representative sites in the central part of the Western Italian Alps (Piemonte and Valle d'Aosta Region). Detailed geological and geomorphological studies have been used to classify the selected sites by type, size and variable state of activity. Very different evolutionary stages of dissolution phenomena have been interpreted by comparison of case-studies: some are early “embryonic”; others are more evolved, up to typical sinkholes, or even remodelled by other phenomena. Some cases show an extreme complexity in the interactions between corrosion phenomena and other geomorphic processes: slope deformations, from one side, and karst, fluvial and glacial phenomena, to the other. A wide range of movement rates on slope instabilities induced by deep dissolution have been estimated by topographic and geomorphic data. Geochemical data on removed rocks by dissolution indicate 0.4 mm/year values for local subsidence. Historical and technical data indicate low frequency of major dissolution-induced collapses, but highlight widespread damages to tunnels, roads and buildings, especially along slopes.  相似文献   
688.
Evolution of coastlines in karst areas may be strongly controlled by dissolution processes which favour the development of surface and subsurface landforms. The generation of caves in these environments is commonly favoured by the mixing between fresh and brackish waters. The sinkholes resulting from the upward propagation of the caves may interfere with the anthropogenic environment and cause damage to human elements (property and activities). To highlight the often underestimated importance of karst phenomena in coastal areas, we have analyzed a coastal stretch of Apulia, in southern Italy. The study area, covering an extension of about 6 km2, is situated in the Ionian coast, and presents several interesting karst landforms that are generally connected to caves. Tens of sinkholes were mapped through field surveys, multi-year aerial-photographs (dating back to the 1940s) and archival research. We have performed a morphometric analysis of the sinkholes. The analysis describes the main parameters of the sinkholes (area, length, width, and depth), and the control exerted by the main discontinuity systems in the area. The detrimental effects derived from interaction between human environment and these karst landforms is also under consideration. A sinkhole susceptibility map, which may provide useful information for planners, developers and the insurance industry has eventually been produced through application of a decision tree model.  相似文献   
689.
Water management and engineering in the karstic High Atlas of Morocco are difficult tasks under the prevailing geological, hydrogeological, geomorphological, vegetational and climatic conditions. It is important to be able to understand and predict the characteristics and availability of water for future water planning in the region under changing climatic and agricultural conditions. An interdisciplinary analysis of problems and adequate hydrological modelling tools developed by geologists, hydrologists and biologists are necessary. The karst areas of the High Atlas Mountains are characterised by impermeable triassic basalt underlying substantial subsurface reservoirs with high potential discharge rates. The karst groundwater aquifers are extensive but largely unknown in dimension, probably with a hierarchical network of groundwater flow paths. It is estimated that approximately 70% of the surface water is directly lost to groundwater. Steep landslide- and debris flow prone slopes exist next to coarse-grained, highly porous river beds. Infrequent, high intensity rainfall or snowmelt causes a particularly high flood risk to these karst areas. In addition, agriculture and land use changes have degraded the karst areas. The most important driving forces for degradation include permanent overgrazing even during droughts and the use of firewood by a continually growing population. Large scale degradation of vegetation has occurred in the oro-mediterranean (mountainous Mediterranean) zone, between 2600 and 3400 m which coincides with the most important zone for karstic groundwater creation. The combination of high amounts of groundwater flow and rapid surface flow due to sparse vegetation has increased the problems of flood flow.  相似文献   
690.
In situ oxygen isotopic measurements of primary and secondary minerals in Type C CAIs from the Allende CV3 chondrite reveal that the pattern of relative enrichments and depletions of 16O in the primary minerals within each individual CAI are similar to the patterns observed in Types A and B CAIs from the same meteorite. Spinel is consistently the most 16O-rich (Δ17O = −25‰ to −15‰), followed by Al,Ti-dioside (Δ17O = −20‰ to −5‰) and anorthite (Δ17O = −15‰ to 0‰). Melilite is the most 16O-depleted primary mineral (Δ17O = −5‰ to −3‰). We conclude that the original melting event that formed Type C CAIs occurred in a 16O-rich (Δ17O  −20‰) nebular gas and they subsequently experienced oxygen isotopic exchange in a 16O-poor reservoir. At least three of these (ABC, TS26F1 and 93) experienced remelting at the time and place where chondrules were forming, trapping and partially assimilating 16O-poor chondrule fragments. The observation that the pyroxene is 16O-rich relative to the feldspar, even though the feldspar preceded it in the igneous crystallization sequence, disproves the class of CAI isotopic exchange models in which partial melting of a 16O-rich solid in a 16O-poor gas is followed by slow crystallization in that gas. For the typical (not associated with chondrule materials) Type C CAIs as well for as the Types A and B CAIs, the exchange that produced internal isotopic heterogeneity within each CAI must have occurred largely in the solid state. The secondary phases grossular, monticellite and forsterite commonly have similar oxygen isotopic compositions to the melilite and anorthite they replace, but in one case (CAI 160) grossular is 16O-enriched (Δ17O = −10‰ to −6‰) relative to melilite (Δ17O = −5‰ to −3‰), meaning that the melilite and anorthite must have exchanged its oxygen subsequent to secondary alteration. This isotopic exchange in melilite and anorthite likely occurred on the CV parent asteroid, possibly during fluid-assisted thermal metamorphism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号