首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   0篇
  国内免费   1篇
测绘学   2篇
大气科学   1篇
地球物理   22篇
地质学   22篇
海洋学   9篇
天文学   14篇
综合类   1篇
自然地理   8篇
  2024年   1篇
  2022年   2篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1988年   1篇
  1964年   1篇
排序方式: 共有79条查询结果,搜索用时 12 毫秒
51.
In the analysis of spatiotemporal processes underlying environmental studies, the estimation of the non-stationary spatial covariance structure is a well known issue in which multidimensional scaling (MDS) provides an important methodological approach (Sampson and Guttorp in J Am Stat Assoc 87:108–119, 1992). It is also well known that approximating dispersion by a non-metric MDS procedure offers, in general, low precision when accurate differences in spatial dispersion are needed for interpolation purposes, specially if a low dimensional configuration is employed besides a high number of stations in oversampled domains. This paper presents a modification, consisting of including geographical spatial constraints, of Heiser and Groenen’s (Psychometrika 62:63–83, 1997) cluster differences scaling algorithm by which not the original stations but the cluster centres can be represented, while the stations and clusters retain their spatial relationships. A decomposition of the sum of squared dissimilarities into contributions from several sources of variation can be employed for an exploratory diagnosis of the model. Real data are analyzed and differences between several cluster-MDS strategies are discussed.  相似文献   
52.
In this paper we present a hydrologic application of a new statistical learning methodology called support vector machines (SVMs). SVMs are based on minimization of a bound on the generalized error (risk) model, rather than just the mean square error over a training set. Due to Mercer's conditions on the kernels, the corresponding optimization problems are convex and hence have no local minima. In this paper, SVMs are illustratively used to reproduce the behavior of Monte Carlo-based flow and transport models that are in turn used in the design of a ground water contamination detection monitoring system. The traditional approach, which is based on solving transient transport equations for each new configuration of a conductivity field, is too time consuming in practical applications. Thus, there is a need to capture the behavior of the transport phenomenon in random media in a relatively simple manner. The objective of the exercise is to maximize the probability of detecting contaminants that exceed some regulatory standard before they reach a compliance boundary, while minimizing cost (i.e., number of monitoring wells). Application of the method at a generic site showed a rather promising performance, which leads us to believe that SVMs could be successfully employed in other areas of hydrology. The SVM was trained using 510 monitoring configuration samples generated from 200 Monte Carlo flow and transport realizations. The best configurations of well networks selected by the SVM were identical with the ones obtained from the physical model, but the reliabilities provided by the respective networks differ slightly.  相似文献   
53.
Measurements of groundwater–surface water exchange at three wetland stream sites were related to patterns in benthic productivity as part of the US Geological Survey's Northern Temperate Lakes–Water, Energy and Biogeochemical Budgets (NTL–WEBB) project. The three sites included one high groundwater discharge (HGD) site, one weak groundwater discharge (WGD) site, and one groundwater recharge (GR) site. Large upward vertical gradients at the HGD site were associated with smallest variation in head below the stream and fewest gradient reversals between the stream and the groundwater beneath the stream, and the stream and the adjacent streambank. The WGD site had the highest number of gradient reversals reflecting the average condition being closest to zero vertical gradient. The duration of groundwater discharge events was related to the amount of discharge, where the HGD site had the longest strong-gradient durations for both horizontal and vertical groundwater flow. Strong groundwater discharge also controlled transient temperature and chemical hyporheic conditions by limiting the infiltration of surface water. Groundwater–surface water interactions were related to highly significant patterns in benthic invertebrate abundance, taxonomic richness, and periphyton respiration. The HGD site abundance was 35% greater than in the WGD site and 53% greater than the GR site; richness and periphyton respiration were also significantly greater (p≤0.001, 31 and 44%, respectively) in the HGD site than in the GR site. The WGD site had greater abundance (27%), richness (19%) and periphyton respiration (39%) than the GR site. This work suggests groundwater–surface water interactions can strongly influence benthic productivity, thus emphasizing the importance of quantitative hydrology for management of wetland-stream ecosystems in the northern temperate regions.  相似文献   
54.
Palaeomagnetic data are presented from Mid-Silurian (Homerian, Upper Wenlock, ~425 Ma) sediments from the Dingle Peninsula, SW Ireland, which forms part of the northern margin of the Palaeozoic microcontinent of Avalonia. Three remanence components were recognized. After removal of a low-temperature component ('L'), oriented parallel to the present Earth field at the sampling area, two higher-stability components were isolated: an intermediate-unblocking-temperature component ('I') with mean in situ D = 196.9°, I = 11.0°, α 95 = 10.8, with a corresponding palaeopole at 330.0°E, 30.6°S ( dp = 5.6, dm = 11.0), and a high-unblocking-temperature component ('H') with mean tilt-corrected D = 218.6°, I = 22.1°, α 95 = 7.9, with a corresponding palaeopole at 309.5°E, 18.3°S ( dp = 4.4, dm = 8.4). A primary (Wenlock) age is indicated for the 'H'-component by a positive intraformational conglomerate test, whereas the 'I'-component is thought to be a secondary mid-Carboniferous partial remagnetization.
These data confirm that the sector of the Iapetus Ocean between Avalonia and Laurentia was essentially closed, within the limits of palaeomagnetic resolution, by the Wenlock. There is still, however, a discrepancy between the declinations recorded by similar-aged sequences to the north and south of the Iapetus Suture. These point to either an approximately 30° clockwise rotation of the entire Avalonian microcontinent relative to Laurentia during closure, or local vertical axis rotations of the sampling sites in southern Britain.  相似文献   
55.
Vázquez  R.  Macías  J. L.  Alcalá-Reygosa  J.  Arce  J. L.  Jiménez-Haro  A.  Fernández  S.  Carlón  T.  Saucedo  R.  Sánchez-Núñez  J. M. 《Natural Hazards》2022,110(2):1305-1337
Natural Hazards - Both climate and land-use changes can influence drought in different ways. Thus, to predict future drought conditions, hydrological simulations, as an ideal means, can be used to...  相似文献   
56.
Multidimensional scaling (MDS) has played an important role in non-stationary spatial covariance structure estimation and in analyzing the spatiotemporal processes underlying environmental studies. A combined cluster-MDS model, including geographical spatial constraints, has been previously proposed by the authors to address the estimation problem in oversampled domains in a least squares framework. In this paper is formulated a general latent class model with spatial constraints that, in a maximum likelihood framework, allows to partition the sample stations into classes and simultaneously to represent the cluster centers in a low-dimensional space, while the stations and clusters retain their spatial relationships. A model selection strategy is proposed to determine the number of latent classes and the dimensionality of the problem. Real and artificial data sets are analyzed to test the performance of the model.  相似文献   
57.
58.
59.
Meteoritical and astrophysical models of planet formation make contradictory predictions for dust concentration factors in chondrule-forming regions of the solar nebula. Meteoritical and cosmochemical models strongly suggest that chondrules, a key component of the meteoritical record, formed in regions with solids-to-gas mass ratios orders above the solar nebula average. However, models of dust grain dynamics in protoplanetary disks struggle to surpass concentration factors of a few except during very short-lived stages in a dust grain's life. Worse, those models do not predict significant concentration factors for dust grains the size of chondrule precursors. We briefly develop the difficulty in concentrating dust particles in the context of nebular chondrule formation and show that the disagreement is sufficiently stark that cosmochemists should explore ideas that might revise the concentration factor requirements downward.  相似文献   
60.
Mexico City relies on groundwater for most of its domestic supply. Over the years, intensive pumping has led to significant drawdowns and, subsequently, to severe land subsidence. Tensile cracks have also developed or reactivated as a result. All such processes cause damage to urban infrastructure, increasing the risk of spills and favoring contaminant propagation into the aquifer. The effects of ground deformation are frequently ignored in groundwater vulnerability studies, but can be relevant in subsiding cities. This report presents an extension to the DRASTIC methodology, named DRASTIC-Sg, which focuses on evaluating groundwater vulnerability in urban aquifers affected by differential subsidence. A subsidence parameter is developed to represent the ground deformation gradient (Sg), and then used to depict areas where damage risk to urban infrastructure is higher due to fracture propagation. Space-geodetic SqueeSAR data and global positioning system (GPS) validation were used to evaluate subsidence rates and gradients, integrating hydrogeological and geomechanical variables into a GIS environment. Results show that classic DRASTIC approaches may underestimate groundwater vulnerability in settings such as the one at hand. Hence, it is concluded that the Sg parameter is a welcome contribution to develop reliable vulnerability assessments in subsiding basins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号