首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1324篇
  免费   83篇
  国内免费   13篇
测绘学   45篇
大气科学   81篇
地球物理   378篇
地质学   508篇
海洋学   101篇
天文学   166篇
综合类   6篇
自然地理   135篇
  2023年   8篇
  2022年   6篇
  2021年   23篇
  2020年   24篇
  2019年   32篇
  2018年   45篇
  2017年   43篇
  2016年   50篇
  2015年   38篇
  2014年   36篇
  2013年   77篇
  2012年   59篇
  2011年   61篇
  2010年   42篇
  2009年   73篇
  2008年   64篇
  2007年   68篇
  2006年   62篇
  2005年   50篇
  2004年   58篇
  2003年   29篇
  2002年   48篇
  2001年   25篇
  2000年   38篇
  1999年   30篇
  1998年   33篇
  1997年   16篇
  1996年   20篇
  1995年   16篇
  1994年   14篇
  1993年   12篇
  1992年   16篇
  1991年   14篇
  1990年   16篇
  1989年   13篇
  1988年   12篇
  1987年   10篇
  1986年   8篇
  1985年   13篇
  1984年   11篇
  1983年   8篇
  1982年   7篇
  1981年   11篇
  1980年   7篇
  1979年   12篇
  1978年   5篇
  1977年   5篇
  1976年   12篇
  1975年   6篇
  1974年   6篇
排序方式: 共有1420条查询结果,搜索用时 31 毫秒
251.
During the time taken for seismic data to be acquired, reservoir pressure may fluctuate as a consequence of field production and operational procedures and fluid fronts may move significantly. These variations prevent accurate quantitative measurement of the reservoir change using 4D seismic data. Modelling studies on the Norne field simulation model using acquisition data from ocean-bottom seismometer and towed streamer systems indicate that the pre-stack intra-survey reservoir fluctuations are important and cannot be neglected. Similarly, the time-lapse seismic image in the post-stack domain does not represent a difference between two states of the reservoir at a unique base and monitor time, but is a mixed version of reality that depends on the sequence and timing of seismic shooting. The outcome is a lack of accuracy in the measurement of reservoir changes using the resulting processed and stacked 4D seismic data. Even for perfect spatial repeatability between surveys, a spatially variant noise floor is still anticipated to remain. For our particular North Sea acquisition data, we find that towed streamer data are more affected than the ocean-bottom seismometer data. We think that this may be typical for towed streamers due to their restricted aperture compared to ocean-bottom seismometer acquisitions, even for a favourable time sequence of shooting and spatial repeatability. Importantly, the pressure signals on the near and far offset stacks commonly used in quantitative 4D seismic inversion are found to be inconsistent due to the acquisition timestamp. Saturation changes at the boundaries of fluid fronts appear to show a similar inconsistency across sub-stacks. We recommend that 4D data are shot in a consistent manner to optimize aerial time coverage, and that additionally, the timestamp of the acquisition should be used to optimize pre-stack quantitative reservoir analysis.  相似文献   
252.
A section cut across an alluvial fan and the underlying floodplain terrace in the central Grampian Highlands provides an unusually complete record of late Holocene events. At ca. 2.7–2.4 cal kyr BP floodplain aggradation was replaced by net floodplain incision. Pollen evidence and charcoal counts provide no evidence for contemporaneous anthropogenic landscape change, and the timing of the transition suggests that it reflects an increase in high-magnitude erosive flood events following overall climatic deterioration. The overlying fan was deposited by torrential hyperconcentrated flows during three brief storm-generated depositional events at ca. 2.2–2.1, 1.9–1.8 and 0.9–0.7 cal kyr BP, separated and succeeded by prolonged periods of stability and peat accumulation. During these three events, a cumulative total of ca. 6750 m3 of sediment was deposited, probably in no more than a few hours over a timescale of two millennia. These findings imply that proposed links between human activity and the development of alluvial fans or debris cones require reassessment, and that different elements of the Holocene alluvial landscape have responded in different ways to the same climatic inputs. Aggregation of dating evidence relating to aggradation or incision of alluvial landforms at different scales therefore may produce misleading results. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
253.
Probabilistic domain decomposition is proposed as a novel method for solving the two-dimensional Maxwell’s equations as used in the magnetotelluric method. The domain is split into non-overlapping sub-domains and the solution on the sub-domain boundaries is obtained by evaluating the stochastic form of the exact solution of Maxwell’s equations by a Monte-Carlo approach. These sub-domains can be naturally chosen by splitting the sub-surface domain into regions of constant (or at least continuous) conductivity. The solution over each sub-domain is obtained by solving Maxwell’s equations in the strong form. The sub-domain solver used for this purpose is a meshless method resting on radial basis function-based finite differences. The method is demonstrated by solving a number of classical magnetotelluric problems, including the quarter-space problem, the block-in-half-space problem and the triangle-in-half-space problem.  相似文献   
254.
The mechanics of water retention in unsaturated granular media is of critical importance to a broad range of disciplines including soil science, geotechnical engineering, hydrology and agriculture. Fundamental to water retention is the relationship between degree of saturation and suction, referred to as the water retention curve (WRC). The majority of WRC models are empirically based and seldom incorporate physically meaningful parameters. This study presents an analytical model for the WRC that considers separate contributions from fully filled pores and partially filled pores containing liquid bridges. A recently established unique k-gamma pore volume distribution function for randomly assembled monodisperse granular materials is adopted to determine the contributions of fully filled pores. Calculation of the contribution of residual pore water retained in partially filled pores is undertaken by representing pores as individual cells shaped as platonic shapes of various sizes and determining the volume of all liquid bridges suspended between particles within the pore cells. Weighting factors for the various cell types are obtained from the pore volume distribution to determine the relative contribution of different pore cell geometries to the total residual pore water. The combined model accurately describes experimental data for monodisperse spherical glass beads for both wetting and drying, even though the underlying assumptions do not reflect exactly the complex, interconnected and highly irregular geometry of the pore space. A single parameter provides the lateral shift between the wetting and drying curves. The results of this study provide a geometric understanding of the mechanisms of water retention in granular media.  相似文献   
255.
The Eagle Ford Shale of Central and South Texas is currently of great interest for oil and gas exploration and production. Laboratory studies show that the Eagle Ford Shale is anisotropic, with a correlation between anisotropy and total organic carbon. Organic materials are usually more compliant than other minerals present in organic‐rich shales, and their shapes and distribution are usually anisotropic. This makes organic materials an important source of anisotropy in organic‐rich shales. Neglecting shale anisotropy may lead to incorrect estimates of rock and fluid properties derived from inversion of amplitude versus offset seismic data. Organic materials have a significant effect on the PP and PS reflection amplitudes from the Austin Chalk/Upper Eagle Ford interface, the Upper Eagle Ford/Lower Eagle Ford interface, and the Lower Eagle Ford/Buda Limestone interface. The higher kerogen content of the Lower Eagle Ford compared with that of the Upper Eagle Ford leads to a negative PP reflection amplitude that dims with offset, whereas the PS reflection coefficient increases in magnitude with increasing offset. The PP and PS reflection coefficients at the Austin Chalk/Upper Eagle Ford interface, the Upper Eagle Ford/Lower Eagle Ford interface, and the Lower Eagle Ford/Buda Limestone interface all increase in magnitude with increasing volume fraction of kerogen.  相似文献   
256.
Mud volcanism is commonly observed in Azerbaijan and the surrounding South Caspian Basin. This natural phenomenon is very similar to magmatic volcanoes but differs in one considerable aspect: Magmatic volcanoes are generally the result of ascending molten rock within the Earth's crust, whereas mud volcanoes are characterised by expelling mixtures of water, mud, and gas. The majority of mud volcanoes have been observed on ocean floors or in deep sedimentary basins, such as those found in Azerbaijan. Furthermore, their occurrences in Azerbaijan are generally closely associated with hydrocarbon reservoirs and are therefore of immense economic and geological interest. The broadside long‐offset transient electromagnetic method and the central‐loop transient electromagnetic method were applied to study the inner structure of such mud volcanoes and to determine the depth of a resistive geological formation that is predicted to contain the majority of the hydrocarbon reservoirs in the survey area. One‐dimensional joint inversion of central‐loop and long‐offset transient electromagnetic data was performed using the inversion schemes of Occam and Marquardt. By using the joint inversion models, a subsurface resistivity structure ranging from the surface to a depth of approximately 7 km was determined. Along a profile running perpendicular to the assumed strike direction, lateral resistivity variations could only be determined in the shallow depth range using the transient electromagnetic data. An attempt to resolve further two‐dimensional/three‐dimensional resistivity structures, representing possible mud migration paths at large depths using the long‐offset transient electromagnetic data, failed. Moreover, the joint inversion models led to ambiguous results regarding the depth and resistivity of the hydrocarbon target formation due to poor resolution at great depths (>5 km). Thus, 1D/2D modelling studies were subsequently performed to investigate the influence of the resistive terminating half‐space on the measured long‐offset transient electromagnetic data. The 1D joint inversion models were utilised as starting models for both the 1D and 2D modelling studies. The results tend to show that a resistive terminating half‐space, implying the presence of the target formation, is the favourable geological setting. Furthermore, the 2D modelling study aimed to fit all measured long‐offset transient electromagnetic Ex transients along the profile simultaneously. Consequently, 3125 2D forward calculations were necessary to determine the best‐fit resistivity model. The results are consistent with the 1D inversion, indicating that the data are best described by a resistive terminating half‐space, although the resistivity and depth cannot be determined clearly.  相似文献   
257.
We introduce a simple correction to coastal heads for constant‐density groundwater flow models that contain a coastal boundary, based on previous analytical solutions for interface flow. The results demonstrate that accurate discharge to the sea in confined aquifers can be obtained by direct application of Darcy's law (for constant‐density flow) if the coastal heads are corrected to ((α + 1)/α)hs ? B/2α, in which hs is the mean sea level above the aquifer base, B is the aquifer thickness, and α is the density factor. For unconfined aquifers, the coastal head should be assigned the value . The accuracy of using these corrections is demonstrated by consistency between constant‐density Darcy's solution and variable‐density flow numerical simulations. The errors introduced by adopting two previous approaches (i.e., no correction and using the equivalent fresh water head at the middle position of the aquifer to represent the hydraulic head at the coastal boundary) are evaluated. Sensitivity analysis shows that errors in discharge to the sea could be larger than 100% for typical coastal aquifer parameter ranges. The location of observation wells relative to the toe is a key factor controlling the estimation error, as it determines the relative aquifer length of constant‐density flow relative to variable‐density flow. The coastal head correction method introduced in this study facilitates the rapid and accurate estimation of the fresh water flux from a given hydraulic head measurement and allows for an improved representation of the coastal boundary condition in regional constant‐density groundwater flow models.  相似文献   
258.
River channel sediment dynamics are important in integrated catchment management because changes in channel morphology resulting from sediment transfer have important implications for many river functions. However, application of existing approaches that account for catchment‐scale sediment dynamics has been limited, largely due to the difficulty in obtaining data necessary to support them. It is within this context that this study develops a new, reach‐based, stream power balance approach for predicting river channel adjustment. The new approach, named ST:REAM (sediment transport: reach equilibrium assessment method), is based upon calculations of unit bed area stream power (ω) derived from remotely sensed slope, width and discharge datasets. ST:REAM applies a zonation algorithm to values of ω that are spaced every 50 m along the catchment network in order to divide the branches of the network up into relatively homogenous reaches. ST:REAM then compares each reach's ω value with the ω of its upstream neighbour in order to predict whether or not the reach is likely to be either erosion dominated or deposition dominated. The paper describes the application of ST:REAM to the River Taff in South Wales, UK. This test study demonstrated that ST:REAM can be rapidly applied using remotely sensed data that are available across many river catchments and that ST:REAM correctly predicted the status of 87.5% of sites within the Taff catchment that field observations had defined as being either erosion or deposition dominated. However, there are currently a number of factors that limit the usefulness of ST:REAM, including inconsistent performance and the need for additional, resource intensive, data to be collected to both calibrate the model and aid interpretation of its results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
259.
Small‐scale hyporheic zone (HZ) models often use a spatial periodic boundary (SPB) pair to simulate an infinite repetition of bedforms. SPB's are common features of commercially available multiphysics modeling packages. MODFLOW's lack of this boundary type has precluded it from being effectively utilized in this area of HZ research. We present a method to implement the SPB in MODFLOW by development of the appropriate block‐centered finite‐difference expressions. The implementation is analogous to MODFLOW's general head boundary package. The difference is that the terms on the right hand side of the solution equations must be updated with each iteration. Consequently, models that implement the SPB converge best with solvers that perform both inner and outer iterations. The correct functioning of the SPB condition in MODFLOW is verified by two examples. This boundary condition allows users to build HZ‐bedform models in MODFLOW, facilitating further research using related codes such as MT3DMS and PHT3D.  相似文献   
260.
We quantify and compare different measures of potential propagule pressure (PPP) of aquatic invasive species (AIS) from commercial vessels in Canada. We used ship arrivals and ballast water discharge volumes as proxies for PPP from ballast water organisms, and wetted surface area (WSA) as a proxy for hull fouling PPP, to determine their relative contributions to total PPP. For three regions studied, PPP proxies correlated significantly across ports and some vessel categories. Relative contributions of ship arrivals, ballast discharge, and WSAs to PPP, evidenced by non-significant correlations across these measures, varied across regions, ports, vessel types, and seasons. Flow-through (dominant on east and west coasts) and empty-refill (in Great Lakes-St. Lawrence region) were the major ballast water exchange methods employed by the vessels surveyed. These methods have different biological efficacy for AIS removal, influencing PPP. Our study illustrates benefits and limitations of using different PPP proxies to estimate invasion risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号