首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1323篇
  免费   83篇
  国内免费   13篇
测绘学   45篇
大气科学   81篇
地球物理   378篇
地质学   507篇
海洋学   101篇
天文学   166篇
综合类   6篇
自然地理   135篇
  2023年   8篇
  2022年   6篇
  2021年   23篇
  2020年   24篇
  2019年   32篇
  2018年   45篇
  2017年   43篇
  2016年   50篇
  2015年   38篇
  2014年   36篇
  2013年   77篇
  2012年   59篇
  2011年   61篇
  2010年   42篇
  2009年   73篇
  2008年   64篇
  2007年   68篇
  2006年   62篇
  2005年   50篇
  2004年   58篇
  2003年   29篇
  2002年   48篇
  2001年   25篇
  2000年   38篇
  1999年   30篇
  1998年   33篇
  1997年   16篇
  1996年   20篇
  1995年   16篇
  1994年   14篇
  1993年   12篇
  1992年   16篇
  1991年   14篇
  1990年   16篇
  1989年   13篇
  1988年   12篇
  1987年   10篇
  1986年   8篇
  1985年   13篇
  1984年   11篇
  1983年   8篇
  1982年   7篇
  1981年   11篇
  1980年   6篇
  1979年   12篇
  1978年   5篇
  1977年   5篇
  1976年   12篇
  1975年   6篇
  1974年   6篇
排序方式: 共有1419条查询结果,搜索用时 15 毫秒
151.
152.
Geomorphological mapping of northern Arran provides evidence for two advances of locally nourished glaciers, the younger being attributable to the Loch Lomond Stade (LLS) of ca. 12.9–11.5 k yr BP, primarily through the mutually exclusive relationship between glacial limits and Lateglacial periglacial features. The age of the earlier advance is unknown. Inferred LLS glacier cover comprised two small icefields and eight small corrie or valley glaciers and totalled 11.1 km2. ELAs reconstructed using area–altitude balance ratio methods range from 268 m to 631 m for individual glaciers, with an area‐weighted mean ELA of 371 m. ELAs of individual glaciers are strongly related to snow‐contributing areas. The area‐weighted mean ELA is consistent with a north–south decline in LLS ELAs along the west coast of Great Britain. This decline has an average latitudinal gradient of 70 m 100 km?1, equivalent to a mean southwards ablation‐season temperature increase of ca. 0.42°C 100 km?1. Mean June–August temperatures at the regional climatic ELA, estimated from chironomid assemblages in SE Scotland, lay between 5.7 ± 0.1°C and 4.1 ± 0.2°C. Empirical relationships between temperature and precipitation at modern glacier ELAs indicate equivalent mean annual precipitation at the ELA lay between 2002 ± 490 mm and 2615 ± 449 mm. These figures suggest that stadial precipitation on Arran fell within a range between +8% and ?33% of present mean annual precipitation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
153.
This paper investigates new families of displaced, highly non-Keplerian orbits in the two-body problem and artificial equilibria in the circular restricted three-body problem. The families of orbits presented extend prior work by using periodic impulses to generate displaced orbits rather than continuous thrust. The new displaced orbits comprise a sequence of individual Keplerian arcs whose intersection is continuous in position, with discontinuities in velocity removed using impulses. For frequent impulses the new families of orbits approximate continuous thrust non-Keplerian orbits found in previous studies. To generate approximations to artificial equilibria in the circular restricted three-body problem, periodic impulses are used to generate a sequence of connected three-body arcs which begin and terminate at a fixed position in the rotating frame of reference. Again, these families of orbits reduce to the families of artificial equilibria found using continuous thrust.  相似文献   
154.
The Gede Volcanic Complex (GVC) of the Sunda island arc (West Java, Indonesia) consists of multiple volcanic centres and eruptive groups with complex magmatic histories. We present new petrological, mineralogical, whole-rock major and trace element and Sr–O isotopic data to provide constraints on the relative importance of fractional crystallisation and magma mixing in petrogenesis, as well as on the role and nature of the arc crust. Banded juvenile scoria from Young and Old Gede provide unequivocal evidence for the (late-stage) interaction of distinct magmas at Gede volcano. However, the relatively small-degree compositional zoning observed in plagioclase phenocrysts of all eruptive groups (up to ~20 mol% An) may be attributed to physical changes in magma properties (e.g. P, T, and PH2O) rather than changes in melt composition. Major element and trace element variations within each eruptive series are inconsistent with magmatic evolution through simple mixing processes. Instead, mixing of variably fractionated magma batches is suggested to account for the significant scatter in some element variation diagrams. No correlation is observed between textural complexity and/or mineral disequilibrium and whole-rock geochemistry. REE data and geochemical modelling indicate that fractional crystallisation involving amphibole in the mid- to lower crust, and fractionation of plagioclase, clinopyroxene, Fe–Ti oxide ± olivine ± orthopyroxene provide strong control on the geochemical evolution of GVC rocks. Two-pyroxene geothermobarometry provides pre-eruption crystallisation temperatures of 891–1,046°C and pressures of 3.4–6.5 kbar, equivalent to ~13–24 km depth beneath the volcanoes (mid- to lower crust). Low, mantle-like clinopyroxene δ18O values of GVC lavas and poor correlation of Sr isotope ratios with indices of differentiation precludes significant assimilation of isotopically distinct crust during magmatic differentiation. Therefore, we suggest that the geochemical character of the moderately thick West Javan arc crust is relatively immature compared to typical continental crust. Trace element ratios and strontium isotopes show that the magmatic source composition of the older geographical units, Gegerbentang and Older Quaternary, is distinct from the other GVC groups.  相似文献   
155.
Microbial SO42− reduction limits accumulation of aqueous As in reducing aquifers where the sulfide that is produced forms minerals that sequester As. We examined the potential for As partitioning into As- and Fe-sulfide minerals in anaerobic, semi-continuous flow bioreactors inoculated with 0.5% (g mL−1) fine-grained alluvial aquifer sediment. A fluid residence time of three weeks was maintained over a ca. 300-d incubation period by replacing one-third of the aqueous phase volume of the reactors with fresh medium every seven days. The medium had a composition comparable to natural As-contaminated groundwater with slightly basic pH (7.3) and 7.5 μM aqueous As(V) and also contained 0.8 mM acetate to stimulate microbial activity. Medium was delivered to a reactor system with and without 10 mmol L−1 synthetic goethite (α-FeOOH). In both reactors, influent As(V) was almost completely reduced to As(III). Pure As-sulfide minerals did not form in the Fe-limited reactor. Realgar (As4S4) and As2S3(am) were undersaturated throughout the experiment. Orpiment (As2S3) was saturated while sulfide content was low (∼50 to 150 μM), but precipitation was likely limited by slow kinetics. Reaction-path modeling suggests that, even if these minerals had formed, the dissolved As content of the reactor would have remained at hazardous levels. Mackinawite (Fe1 + xS; x ? 0.07) formed readily in the Fe-bearing reactor and held dissolved sulfide at levels below saturation for orpiment and realgar. The mackinawite sequestered little As (<0.1 wt.%), however, and aqueous As accumulated to levels above the influent concentration as microbial Fe(III) reduction consumed goethite and mobilized adsorbed As. A relatively small amount of pyrite (FeS2) and greigite (Fe3S4) formed in the Fe-bearing reactor when we injected a polysulfide solution (Na2S4) to a final concentration of 0.5 mM after 216, 230, 279, and 286 days. The pyrite, and to a lesser extent the greigite, that formed did sequester As from solution, containing 0.84 and 0.23 wt.% As on average, respectively. Our results suggest that As precipitation during Fe-sulfide formation in nature occurs mainly in conjunction with pyrite formation. Our findings imply that the effectiveness of stimulating microbial SO42− reduction to remediate As contamination may be limited by the rate and extent of pyrite formation and the solubility of As-sulfides.  相似文献   
156.
The mineralogy and bulk compositions of the matrices of the CR chondrites MET 00426 and QUE 99177 have been studied using a combination of SEM, EPMA, and TEM techniques. The matrices of these two chondrites are texturally, chemically, and mineralogically similar and are characterized by significant FeO-enrichments with respect to other CR chondrite matrices, nearly flat refractory lithophile patterns, variable volatile element patterns, and a simple mineral assemblage dominated by amorphous silicate material and Fe,Ni sulfides. Fine-grained, crystalline silicate phases such as olivine and pyroxene appear to be extremely rare in the matrices of both meteorites. Instead, the mineralogy of matrices and fine-grained rims of both meteorites consists of abundant amorphous FeO-rich silicate material, containing nanoparticles of Fe,Ni sulfides (troilite, pyrrhotite, and pentlandite). Secondary alteration minerals that are characteristic of other CR chondrites (e.g., Renazzo and Al Rais), such as phyllosilicates, magnetite, and calcite are also rare. The texture and mineralogy of the matrices of MET 00426 and QUE 99177 share many features with matrices in the primitive carbonaceous chondrites ALH A77307 (CO3.0) and Acfer 094 (unique). These observations show that MET 00426 and QUE 99177 are very low petrologic type 3 chondrites that have escaped the effects of aqueous alteration, unlike other CR chondrites, which are typically classified as petrologic type 2. We suggest that these meteorites represent additional samples of highly primitive, but extremely rare carbonaceous chondrites of petrologic type 3.00, according to the classification scheme of Grossman and Brearley (2005). The highly pristine nature of MET 00426 and QUE 99177 provides important additional insights into the origins of fine-grained materials in carbonaceous chondrites. Based on our new observations, we infer that the amorphous silicate material and nanosulfide particles that dominate the matrices of these meteorites formed in the solar nebula by rapid condensation of material following high-temperature events, such as those that formed chondrules.  相似文献   
157.
δ18O was determined at high spatial resolution (beam diameter ∼30 μm) by secondary ion mass spectrometry (SIMS) across 1-2 year sections of 2 modern Porites lobata coral skeletons from Hawaii. We observe large (>2‰) cyclical δ18O variations that typically cover skeletal distances equivalent to periods of ∼20-30 days. These variations do not reflect seawater temperature or composition and we conclude that skeletal δ18O is principally controlled by other processes. Calcification site pH in one coral record was estimated from previous SIMS measurements of skeletal δ11B. We model predicted skeletal δ18O as a function of calcification site pH, DIC residence time at the site and DIC source (reflecting the inputs of seawater and molecular CO2 to the site). We assume that oxygen isotopic equilibration proceeds at the rates observed in seawater and that only the aqueous carbonate ion is incorporated into the precipitating aragonite. We reproduce successfully the observed skeletal δ18O range by assuming that DIC is rapidly utilised at the calcification site (within 1 h) and that ∼80% of the skeletal carbonate is derived from seawater. If carbonic anhydrase catalyses the reversible hydration of CO2 at the calcification site, then oxygen isotopic equilibration times may be substantially reduced and a larger proportion of the skeletal carbonate could be derived from molecular CO2. Seasonal skeletal δ18O variations are most pronounced in the skeleton deposited from late autumn to winter (and coincide with the high density skeletal bands) and are dampened in skeleton deposited from spring to summer. We observed no annual pattern in sea surface temperature or photosynthetically active radiation variability which could potentially correlate with the coral δ18O. At present we are unable to resolve an environmental cue to drive seasonal patterns of short term skeletal δ18O heterogeneity.  相似文献   
158.
Gold mineralisation in the White River area, 80 km south of the highly productive Klondike alluvial goldfield, is hosted in amphibolite facies gneisses in the same Permian metamorphic pile as the basement for the Klondike goldfield. Hydrothermal fluid which introduced the gold was controlled by fracture systems associated with middle Cretaceous to early Tertiary extensional faults. Gold deposition occurred where highly fractured and chemically reactive rocks allowed intense water–rock interaction and hydrothermal alteration, with only minor development of quartz veins. Felsic gneisses were sericitised with recrystallisation of hematite and minor arsenic mobility, and extensively pyritised zones contain gold and minor arsenic (ca 10 ppm). Graphitic quartzites (up to 5 wt.% carbon) caused chemical reduction of mineralising fluids, with associated recrystallisation of metamorphic minerals (graphite, pyrrhotite, pyrite, chalcopyrite) in host rocks and veins, and introduction of arsenic (up to 1 wt.%) to form arsenopyrite in veins and disseminated through host rock. Veins have little or no hydrothermal quartz, and up to 19 wt.% carbon as graphite. Late-stage oxidation of arsenopyrite in some graphitic veins has formed pharmacosiderite. Gold is closely associated with disseminated and vein sulphides in these two rock types, with grades of up to 3 ppm on the metre scale. Other rock types in the White River basement rocks, including biotite gneiss, hornblende gneiss, pyroxenite, and serpentinite, have not developed through-going fracture systems because of their individual mineralogical and rheological characteristics, and hence have been little hydrothermally altered themselves, have little hydrothermal gold, and have restricted flow of fluids through the rock mass. Some small post-metamorphic quartz veins (metre scale) have been intensely fractured and contain abundant gold on fractures (up to 40 ppm), but these are volumetrically minor. The style of gold mineralisation in the White River area is younger than, and distinctly different from, that of the Klondike area. Some of the mineralised zones in the White River area resemble, mineralogically and geochemically, nearby coeval igneous-hosted gold deposits, but this resemblance is superficial only. The White River mineralisation is an entirely new style of Yukon gold deposit, in which host rocks control the mineralogy and geochemistry of disseminated gold, without quartz veins.  相似文献   
159.
Dust grains that formed around ancient stars and in stellar explosions seeded the early solar protoplanetary disk. While most of such presolar grains were destroyed during solar system formation, a fraction of such grains were preserved in primitive materials such as meteorites. These grains can provide constraints on stellar origins and secondary processing such as aqueous alteration and thermal metamorphism on their parent asteroids. Here, we report on the nature of aqueous alteration in the Miller Range (MIL) 07687 chondrite through the analysis of four presolar silicates and their surrounding material. The grains occur in the Fe-rich and Fe-poor lithologies, reflecting relatively altered and unaltered material, respectively. The O-isotopic compositions of two grains, one each from the Fe-rich and Fe-poor matrix, are consistent with formation in the circumstellar envelopes of low-mass Asymptotic Giant Branch (AGB)/Red Giant Branch (RGB) stars. The other two grains, also one each from the Fe-rich and Fe-poor matrix, have O-isotopic compositions consistent with formation in the ejecta of type-II supernovae (SNe). The grains derived from AGB/RGB stars include two polycrystalline pyroxene grains that contain Fe-rich rims. The SNe grains include a polycrystalline Ca-bearing pyroxene and a polycrystalline assemblage consistent with a mixture of olivine and pyroxene. Ferrihydrite is observed in all focused ion beam sections, consistent with parent-body aqueous alteration of the fine-grained matrix under oxidizing conditions. The Fe-rich rims around presolar silicates in this study are consistent with Fe-diffusion into the grains resulting from early-stage hydrothermal alteration, but such alteration was not extensive enough to lead to isotopic equilibration with the surrounding matrix.  相似文献   
160.
Subduction-related Quaternary volcanic rocks from Solander and Little Solander Islands, south of mainland New Zealand, are porphyritic trachyandesites and andesites (58.20–62.19 wt% SiO2) with phenocrysts of amphibole, plagioclase and biotite. The Solander and Little Solander rocks are incompatible element enriched (e.g. Sr ~931–2,270 ppm, Ba ~619–798 ppm, Th ~8.7–21.4 ppm and La ~24.3–97.2 ppm) with MORB-like Sr and Nd isotopic signatures. Isotopically similar quench-textured enclaves reflect mixing with intermediate (basaltic-andesite) magmas. The Solander rocks have geochemical affinities with adakites (e.g. high Sr/Y and low Y), whose origin is often attributed to partial melting of subducted oceanic crust. Solander sits on isotopically distinct continental crust, thus excluding partial melting of the lower crust in the genesis of the magmas. Furthermore, the incompatible element enrichments of the Solander rocks are inconsistent with partial melting of newly underplated mafic lower crust; reproduction of their major element compositions would require unrealistically high degrees of partial melting. A similar argument precludes partial melting of the subducting oceanic crust and the inability to match the observed trace element patterns in the presence of residual garnet or plagioclase. Alternatively, an enriched end member of depleted MORB mantle source is inferred from Sr, Nd and Pb isotopic compositions, trace element enrichments and εHf ? 0 CHUR in detrital zircons, sourced from the volcanics. 10Be and Sr, Nd and Pb isotopic systematics are inconsistent with significant sediment involvement in the source region. The trace element enrichments and MORB-like Sr and Nd isotopic characteristics of the Solander rocks require a strong fractionation mechanism to impart the high incompatible element concentrations and subduction-related (e.g. high LILE/HFSE) geochemical signatures of the Solander magmas. Trace element modelling shows that this can be achieved by very low degrees of melting of a peridotitic source enriched by the addition of a slab-derived melt. Subsequent open-system fractionation, involving a key role for mafic magma recharge, resulted in the evolved andesitic adakites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号