首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36637篇
  免费   1068篇
  国内免费   387篇
测绘学   1013篇
大气科学   2982篇
地球物理   8180篇
地质学   13713篇
海洋学   2993篇
天文学   6856篇
综合类   259篇
自然地理   2096篇
  2021年   296篇
  2020年   314篇
  2019年   325篇
  2018年   1394篇
  2017年   1310篇
  2016年   1154篇
  2015年   662篇
  2014年   945篇
  2013年   1721篇
  2012年   1614篇
  2011年   1680篇
  2010年   1191篇
  2009年   1525篇
  2008年   1350篇
  2007年   1319篇
  2006年   1322篇
  2005年   1864篇
  2004年   2056篇
  2003年   1593篇
  2002年   977篇
  2001年   798篇
  2000年   767篇
  1999年   586篇
  1998年   545篇
  1997年   622篇
  1996年   490篇
  1995年   483篇
  1994年   481篇
  1993年   385篇
  1992年   401篇
  1991年   371篇
  1990年   391篇
  1989年   357篇
  1988年   353篇
  1987年   378篇
  1986年   330篇
  1985年   435篇
  1984年   420篇
  1983年   450篇
  1982年   417篇
  1981年   372篇
  1980年   409篇
  1979年   331篇
  1978年   307篇
  1977年   300篇
  1976年   277篇
  1975年   272篇
  1974年   274篇
  1973年   257篇
  1971年   173篇
排序方式: 共有10000条查询结果,搜索用时 130 毫秒
981.
The Petit-Rhône Fan Valley (north-western Mediterranean) is a broad, sinuous, filled valley that is deeply incised by a narrow, sinuous thalweg. The valley fill is differentiated into three seismic subunits on high-resolution seismic-reflection profiles. The lower chaotic subunit probably consists of channel lag deposits that seem to be in lateral continuity with high-amplitude reflections representing levee facies. The intermediate transparent subunit, which has an erosional base and clearly truncates levee deposits, is interpreted to be mass-flow deposits resulting from the disintegration of the fan-valley flanks. The upper bedded subunit shows an overall lens-shaped geometry and the seismic reflections onlap either onto the top of the underlying transparent subunit or onto the Rhône levees. Piston core data show that the upper few meters of this upper subunit consist of thin turbidites, probably deposited by overflow processes. The few available 14C ages suggest that the upper stratified subunit filled the Petit-Rhône Fan Valley between 21 and 11 kyr BP. The upper bedded subunit is deposited within the Petit-Rhône Fan Valley downslope of a major decrease in slope gradient. This upper subunit and the thalweg are genetically related and represent a small channel/levee system confined within the fan valley. Previous studies interpreted this thalweg to be an erosional feature resulting from a recent avulsion of the major channel course. Our interpretation implies that the thalweg is not a purely erosional feature but a depositional/erosional channel. This small channel/levee system is superimposed on a large muddy channel/levee system after the sediment supply changed from thick muddy flows during the main phase of aggradation of the Rhône Fan levees, to thin, mixed (sand and mud) flows at the end of Isotope Stage 2 (~16–18 ka BP). The pre-existing morphology of the Petit-Rhône Fan Valley played a determinant role in the sediment dispersal leading to the creation of this small and confined channel/levee system. These mixed flows have undergone flow stripping resulting from the changes in the slope gradient along the thalweg course. The finer sediment overflowed from the thalweg and were deposited in the Petit-Rhône Fan Valley. Coarser channelled sediment remaining in the thalweg were deposited as a ‘sandy’lobe (Neofan). As indicated by 14C dating, sedimentation on this lobe continued until very recently, suggesting a further evolution of the turbidity flows from small mixed flows to small sandy flows. the deposition of this study lobe and the sedimentary fill of the Petit-Rhône Fan Valley may be related to widespread shelf edge and canyon wall failures with a resulting downslope evolution of failed sediment into turbidity currents.  相似文献   
982.
The Passaic Formation of the late Triassic Newark Supergroup is 2700 m thick and was deposited in series of wide, deep to shallow lacustrine environments in the Newark rift basin (eastern North America). The Passaic Formation can be divided into lower, middle, and upper sections based on depositional structures, composition and the distribution and morphology of its evaporites. Evaporites formed as a result of syndiagenetic cementation and/or displacive processes. Evaporitive minerals now include gypsum and anhydrite, although other mineral species, such as glauberite, may have originally existed. Most of the evaporites of the Passaic Formation occur within massive red mudstone and siltstone lithologies in the form of diffuse cements, void-fillings, euhedral crystals, crystal clusters and nodules. These evaporites grew displacively within the fine siliciclastic matrix as a result of changes in the hydrochemical regimes of the rift basin. A well-developed upward increase in the amount of evaporite material is present in the Passaic Formation. This resulted from: (1) long-term, progressive increase in aridity, and (2) significant increase in evaporation surface area of the basin during its tectonic evolution. A nonmarine source for the evaporites is evident from the isotopic data. Sulphate δ34S ranges from 11%. to 3.3%. CDT, while δ18O ranges from + 15.1%. to + 20.9%. SMOW, indicating derivation from early diagenetic oxidation of organic sulphur and pyrite within the organic-rich, lacustrine deposits. The 87Sr/86Sr ratios in sulphate are radiogenic (average 0.71211), showing the interaction of basin waters with detrital components and that the Newark Basin was isolated from the world ocean. Most of the original evaporites show evidence of diagenetic change to polycrystalline and polymineralic pseudomorphs now filled with recrystallized coarse-grained anhydrite (1–3 mm size) and low-temperature albite. Homogenization temperatures of fluid inclusions within the coarse-grained anhydrite indicate crystallization temperatures for anhydrite in the range of 150° to 280°C. Such elevated temperatures resulted from circulation of hot water in the basin. Later exhumation of these rocks caused partial to total replacement of anhydrite by gypsum in the upper part of the section. The resulting increase in volume due to hydration of anhydrite at shallow depths also emplaced non-evaporative satin-spar veins (fibrous gypsum) along bedding planes and in fractures. While the local geology of the Newark rift basin controlled the distribution of facies, the sedimentological development of the Passaic Formation evaporites resulted from the world-wide climatic aridity that prevailed during the late Triassic. because the Newark Basin sequence was only covered with about 3 km of sedimentary overburden that correspond to about 100°C and hence suggests that evaporites have experienced alteration by hot fluids. 5 As the Triassic marks the greatest evaporite formation world-wide and profound sense of parched continentality throughout the world existed before the final break-up of the Pangea, the Passaic Formation evaporites are an example of the influence of these palaeoclimatic conditions at the eastern margin of North America.  相似文献   
983.
Disequilibrium for Ca during growth of pelitic garnet   总被引:14,自引:1,他引:14  
Compositional zoning in hundreds of almandine-rich garnets in amphibolite by facies micaceous quartzites from the Picuris Range, north-central New Mexico USA, indicates that although Mn, Mg and Fe achieve chemical equilibrium at hand-sample scale during garnet growth, Ca does not. Instead, Ca concentrations at the surface of growing garnets appear to depend strongly on kinetic factors that govern the local chemical environment, yielding disequilibrium for Ca at scales larger than the region immediately surrounding an individual porphyroblast. Detailed zoning profiles were obtained for 371 garnet crystals in a small volume of a single sample of garnetiferous quartzite, and core analyses were made of 97 additional crystals. Each analysis was made on a section that passed precisely through the morphological centre of the crystal, located by means of 3-D imagery from computed X-ray tomography. The data reveal strong correlations between crystal size and concentrations of Mn, Mg and Fe (but not Ca) in garnet cores; a relationship between crystal size and isolation; rigorous cross-correlations among concentrations of Mn, Mg and Fe (but not Ca); and systematic variations in Ca concentrations as a function of crystal size and core composition that are anomalous in comparison to the behaviour of the other divalent cations. We interpret these observations as the result of thermally accelerated diffusion-controlled garnet growth, in circumstances that promoted rapid intergranular diffusion and thus rock-wide equilibration of Mn, Mg and Fe, but that prevented equilibration at similar scale for Ca because of its more sluggish intergranular diffusion. The anomalous behaviour of Ca is made evident in these garnets by the presence of sharp spikes in Ca concentration, which are demonstrably not a consequence of any simultaneous rock-wide event, such as a change in pressure, temperature, or some other intensive parameter. Instead, Ca concentrations probably reflect the local extent of reaction in the immediate vicinity of each porphyroblast. To the degree that such kinetic factors introduce departures from chemical equilibrium for Ca, thermobarometric estimates that involve grossular contents of pelitic garnet will be in error.  相似文献   
984.
UV Laser Ablation ICP-MS: Some Applications in the Earth Sciences   总被引:4,自引:0,他引:4  
This study reports a series of applications of UV laser ablation ICP-MS in the geological sciences. The advantages and disadvantages of the PQ "S" option and the use of nitrogen in the carrier gas are discussed. A general problem common to all ablation techniques is the calibration technique and experiments involving synthetic calibration samples are covered. Zircon geochemistry and geochronology by LA-ICP-MS are discussed and data are presented for REE, Hf and U for a standard zircon (91500) as well as a series of zircons from Zimbabwe. The potential of using Ce and Eu anomalies in petrologic studies is illustrated by zircons from a fractionated gabbroic-granite in the Urals. The potential of the LA-ICP-MS method to utilise standard X-ray fluorescence glass discs is demonstrated as a useful semi-quantitative tool in determining REE patterns. LA-ICP-MS is a powerful tool in the analysis of the platinum group elements (and Re) and some examples are given in the successful application of the technique to partitioning in iron meteorites.  相似文献   
985.
 We report here refined values of the transformation enthalpy for xanthoconite to proustite (54.81 kJ/mol) and pyrostilpnite to pyrargyrite (40.32 kJ/mol). Additionally, the enthalpy for the transformation of trechmannite to smithite (5.82 kJ/mol) has been determined. The refinement was possible by taking into account a previously unknown dependence of electrochemical signals on the amount of substance undergoing the reduction process. Received December 21, 1995/Revised, accepted June 29, 1996  相似文献   
986.
We present a solid solution model, able to take into account short-range interactions up to the third nearest neighbor. This model has been applied to illite/smectite mixed-layer clay minerals and tests the relative thermodynamic stability of each illite/smectite stacking sequence. The non-ideal energy terms have been calculated, showing a strong decrease of the interaction energy as the distance between elements grows. From ΔG m calculations the model predicts the following succession in I/S stacking sequences as X i tends to 1:R1, R2 and then R3. This succession agrees well with some mineralogical observations in natural series. Received: July 12, 1996 / Revised, accepted: March 21, 1997  相似文献   
987.
 Si K- and L-edge ELNES spectroscopy and multiple-scattering (MS) calculations are used to examine mixed Si coordination compounds varying in SiVI:SiIV ratio. As in previous studies, the edges are influenced mainly by silicon coordination (tetrahedral vs. octahedral), as supported by the MS calculations. We demonstrate two methods semi-quantitatively to extract the value of SiVI/(SiVI+SiIV): (1) A linear relationship between the L2,3-L1 splitting and SiVI/(SiVI+SiIV) is observed, (2) a fitting method based on the coaddition of reference tetrahedral and octahedral Si spectra is applied to both Si K- and L-edge ELNES spectra. Received: February 10, 1997 / Revised, accepted: May 23, 1997  相似文献   
988.
989.
990.
During May 1990 and January-February 1991, an extensive geophysical data set was collected over the Côte d'Ivoire-Ghana continental margin, located along the equatorial coast of West Africa. The Ghana margin is a transform continental margin running subparallel to the Romanche Fracture Zone and its associated marginal ridge—the Côte d'Ivoire-Ghana Ridge. From this data set, an explosive refraction line running ∼ 150 km, ENE-WSW between 3°55'N, 3°21'W and 4°23'N, 2°4'W, has been modelled together with wide-angle airgun profiles, and seismic reflection and gravity data. This study is centred on the Côte d'Ivoire Basin located just to the north of the Côte d'Ivoire-Ghana Ridge, where bathymetric data suggest that a component of normal rifting occurred, rather than the transform motion observed along the majority of the equatorial West African margin.
Traveltime and amplitude modelling of the ocean-bottom seismometer data shows that the continental Moho beneath the margin rises in an oceanward direction, from ∼ 24 km below sea level to ∼ 17 km. In the centre of the line where the crust thins most rapidly, there exists a region of anomalously high velocity at the base of the crust, reaching some 8 km in thickness. This higher-velocity region is thought to represent an area of localized underplating related to rifting. Modelling of marine gravity data, collected coincident with the seismic line, has been used to test the best-fitting seismic model. This modelling has shown that the observed free-air anomaly is dominated by the effects of crustal thickness, and that a region of higher density is required at the base of the crust to fit the observed data. This higher-density region is consistent in size and location with the high velocities required to fit the seismic data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号