首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   0篇
大气科学   11篇
地球物理   18篇
地质学   29篇
海洋学   20篇
天文学   3篇
综合类   1篇
自然地理   6篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   2篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   14篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有88条查询结果,搜索用时 125 毫秒
61.
A systematic investigation of fluxes and compositions of lipids through the water column and into sediments was conducted along the U.S. JGOFS EgPac transect from l2°N to l5°S at 140°W. Fluxes of lipids out of the euphotic zone varied spatially and temporally, ranging from ≈0.20 – 0.6 mmol lipid-C m−2 day−1. Lipid fluxes were greatly attenuated with increasing water column depth, dropping to 0.002-0.06 mmol lipid-C m−2 day−1 in deep-water sediment traps. Sediment accumulation rates for lipids were ≈ 0.0002 – 0.00003 mmol lipid-C m−2 day−1. Lipids comprised ≈ 11–23% of Corg in net-plankton, 10–30% in particles exiting the euphotic zone, 2–4% particles in the deep EgPac, and 0.1-1 % in sediments. Lipids were, in general, selectively lost due to their greater reactivity relative to bulk organic matter toward biogeochemical degradation in the water column and sediment. Qualitative changes in lipid compositions through the water column and into sediments are consistent with the reactive nature of lipids. Fatty acids were the most labile compounds, with polyunsaturated fatty acids (PUFAs) being quickly lost from particles. Branchedchain C15 and C17 fatty acids increased in relative abundance as particulate matter sank and was incorporated into the sediment, indicating inputs of organic matter from bacteria. Long-chain C39 alkenones of marine origin and long-chain C20-C30 fatty acids, alcohols and hydrocarbons derived from land plants were selectively preserved in sediments. Compositional changes over time and space demonstrate the dynamic range of reactivities among individual biomarker compounds, and hence of organic matter as a whole. A thorough understanding of biogeochemical reprocessing of organic matter in the oceanic water column and sediments is, thus, essential for using the sediment record for reconstructing past oceanic environments.  相似文献   
62.
Two hypotheses have previously been proposed for the source of elevated radon in ground water of southwestern Ohio: (1) penecontemporaneous uranium at the Silurian-Ordovician unconformity, and/or (2) parent radionuclides transported from fragments of uranium-rich Ohio Shale within the glacial drift above the aquifer. To further test the first hypothesis, vertical profiles of dissolved radon in ground water and uranium in rock cores were obtained at two locations immediately underlain by the Silurian/Ordovician unconformity. Radon concentrations exceeding 1000 pCi/l occurred in zones where the bedrock had uranium concentrations greater than 1.5 ppm. Radon concentrations of less than 500 pCi/l occurred in zones where the rock had uranium concentrations below 0.25 ppm. A log-linear regression model between uranium and radon had a correlation coefficient of 0.82. Three aspects of the results support the hypothesis that the source is transported, although not necessarily from fragments of Ohio Shale. First, the high uranium-radon zones did not occur consistently or exclusively at the Silurian/Ordovician unconformity. Second, the high uranium-radon zones are correlated to fracture zones having a higher hydraulic conductivity and thus appear to be related to the zones of greater flow and transport. Third, the amount of uranium-radon disequilibrium increases exponentially with increasing hydraulic conductivity. The hypothesis of a penecontemporaneous source, not supported by our study, arose when previous investigators conducted regional surveys of domestic wells and springs and found a correspondence between elevated radon and the location of the Silurian-Ordovician unconformity. The observations of the previous investigators can be explained by the fact that the basal Silurian is in some places a horizon of higher hydraulic conductivity that facilitates transport. The two most probable external sources of uranium would be uranium-containing detritus in the glacial drift or uranium-containing phosphate fertilizers spread on the surface. Given that the uranium was transported into the aquifer during the Holocene, it could not have generated enough radium in the time elapsed since entering the aquifer to produce the radon levels that were measured. This observation indicates that radium was cotransported with uranium into the zones of high radon.  相似文献   
63.
64.
We built a classification tree(CT) model to estimate climatic factors controlling the cold temperate coniferous forest(CTCF) distributions in Yunnan province and to predict its potential habitats under the current and future climates, using seven climate change scenarios, projected over the years of 2070-2099. The accurate CT model on CTCFs showed that minimum temperature of coldest month(TMW) was the overwhelmingly potent factor among the six climate variables. The areas of TMW-4.05 were suitable habitats of CTCF, and the areas of -1.35 TMW were non-habitats, where temperate conifer and broad-leaved mixed forests(TCBLFs) were distribute in lower elevation, bordering on the CTCF. Dominant species of Abies, Picea, and Larix in the CTCFs, are more tolerant to winter coldness than Tsuga and broad-leaved trees including deciduous broad-leaved Acer and Betula, evergreen broadleaved Cyclobalanopsis and Lithocarpus in TCBLFs. Winter coldness may actually limit the cool-side distributions of TCBLFs in the areas between -1.35°C and -4.05°C, and the warm-side distributions of CTCFs may be controlled by competition to the species of TCBLFs. Under future climate scenarios, the vulnerable area, where current potential(suitable + marginal) habitats(80,749 km~2) shift to nonhabitats, was predicted to decrease to 55.91%(45,053 km~2) of the current area. Inferring from the current vegetation distribution pattern, TCBLFs will replace declining CTCFs. Vulnerable areas predicted by models are important in determining priority of ecosystem conservation.  相似文献   
65.
Sustainable development necessitates balancing the interests and concerns of both the environment and the economy. The importance of environmental law as a tool to balance these potentially conflicting interests is increasing. Germany, in particular since reunification, provides a good case study of the challenges inherent in a highly industrialized nation towards achieving sustainable development. Since reunification, the concept of sustainable development, in terms of the protection of the essential basis for the existence of future generations, has been incorporated into the constitution in 1994. Explicit means for how to harmonize the needs of both the economy and the environment, however, remain unclear. This is particularly evident in the implementation of so-called “acceleration” laws, designed to shorten the processing time in the re-development of former east Germany, particularly in the areas of transportation infrastructure, wastewater disposal facilities, and housing construction. The implementation of these acceleration laws is generally at the expense of environmental concerns and public involvement in the decision making process. The effectiveness of environmental law as a tool to balance the needs of the environment and the economy, as is required for sustainable development, remains an unmet challenge.  相似文献   
66.
Oysters from the north-west coast of Canada contain high levels of cadmium, a toxic metal, in amounts that exceed food safety guidelines for international markets. A first required step to determine the sources of cadmium is to identify possible spatial and temporal trends in the accumulation of cadmium by the oyster. To meet this objective, rather than sample wild and cultured oysters of unknown age and origin, an oyster “grow-out” experiment was initiated. Cultured oyster seed was suspended in the water column up to a depth of 7 m and the oyster seed allowed to mature a period of 3 years until market size. Oysters were sampled bimonthly and at time of sampling, temperature, chlorophyll-a, turbidity and salinity were measured. Oyster total shell length, dry tissue weights, cadmium concentrations (μg g−1) and burdens (μg of cadmium oyster−1) were determined. Oyster cadmium concentrations and burdens were then interpreted with respect to the spatial and temporal sampling design as well as to the measured physio-chemical and biotic variables. When expressed as a concentration, there was a marked seasonality with concentrations being greater in winter as compared in summer; however no spatial trend was evident. When expressed as a burden which corrects for differences in tissue mass, there was no seasonality, however cadmium oyster burdens increased from south to north. Comparison of cadmium accumulation rates oyster−1 among sites indicated three locations, Webster Island, on the west side of Vancouver Island, and two within Desolation Sound, Teakerne Arm and Redonda Bay, where point sources of cadmium which are not present at all other sampling locations may be contributing to overall oyster cadmium burdens. Of the four physio-chemical factors measured only temperature and turbidity weakly correlated with tissue cadmium concentrations (r2 = −0.13; p < 0.05). By expressing oyster cadmium both as concentration and burden, regional and temporal patterns were demonstrated, which may have been missed if just concentration was determined.  相似文献   
67.
The near-sea surface meteorological conditions associated with the Mediterranean heavy precipitation events constitute, on a short time scale, a strong forcing on the ocean mixed layer. This study addresses the question of the optimal time frequency of the atmospheric forcing to drive an ocean model in order to make it able to capture the fine scale ocean mixed layer response to severe meteorological conditions. The coupling time frequency should allow the ocean model to reproduce the formation of internal low-salty boundary layers due to sudden input of intense precipitation, as well as the cooling and deepening of the ocean mixed layer through large latent heat fluxes and stress under the intense low-level jet associated with these events. In this study, the one-dimensional ocean model is driven by 2.4-km atmospheric simulated fields on a case of Mediterranean heavy precipitation, varying the time resolution of the atmospheric forcing. The results show that using a finer temporal resolution than 1 h for the atmospheric forcing is not necessary, but a coarser temporal resolution (3 or 6 h) modifies the event course and intensity perceived by the ocean. Consequently, when using a too coarse temporal resolution forcing, typically 6 h, the ocean model fails to reproduce the ocean mixed layer fine scale response under the heavy rainfall pulses and the strong wind gusts.  相似文献   
68.
This study illustrates how decoupling of quartz and zircon can be used advantageously in provenance research. Thirty‐eight fine‐grained to coarse‐grained arkose samples of the Early Triassic intracontinental Buntsandstein Group from the Central European Basin in Germany were analysed for their petrography and 1200 grains in 23 of these for their detrital quartz cathodoluminescence characteristics. The samples represent the Hessian and Thuringian sub‐basins and the Eichsfeld–Altmark Swell separating them. The Hessian Sub‐basin includes more metamorphic lithoclasts with a larger content of plutonic grains than are found further east in the Thuringian Sub‐basin. More than 90% of the detrital quartz from the eastern Thuringian Sub‐basin produce medium to bright blue cathodoluminescence colours and corresponding spectra that are typical for igneous or high‐temperature metamorphic origin. Differently, the quartz from the Hessian Sub‐basin mostly luminesces brown and dark to medium blue, typical for a low‐temperature metamorphic origin. Quartz from the Eichsfeld–Altmark Swell and the western Thuringian Sub‐basin is a mixture between these origins. The quartz indicates different catchments for the sub‐basins, possibly the Bohemian Massif and the Massif Central, with converging transport routes on and close to the eastern fringe of the swell. Taking published zircon data from the same samples into account, light mineral‐zircon grain‐size shifts are up to 2 Φ units. That can be explained by mineral decoupling due to different transport modes for quartz and zircon and different zircon‐size availability in the source areas, exaggerated by combined aqueous–aeolian transport, as well as sample preparation‐induced sorting. This study concludes that submerged highs significantly can influence continental sediment transport. Hence, vast, flat continental areas with submerged morphological highs and a seemingly straightforward transportation pattern may be more complex than expected. The results also illustrate that analysis of detritus that has been affected by different dominating transport modes, and further sorting during sampling and preparation can reveal additional source information.  相似文献   
69.
The use of high resolution atmosphere–ocean coupled regional climate models to study possible future climate changes in the Mediterranean Sea requires an accurate simulation of the atmospheric component of the water budget (i.e., evaporation, precipitation and runoff). A specific configuration of the version 3.1 of the weather research and forecasting (WRF) regional climate model was shown to systematically overestimate the Mediterranean Sea water budget mainly due to an excess of evaporation (~1,450 mm yr?1) compared with observed estimations (~1,150 mm yr?1). In this article, a 70-member multi-physics ensemble is used to try to understand the relative importance of various sub-grid scale processes in the Mediterranean Sea water budget and to evaluate its representation by comparing simulated results with observed-based estimates. The physics ensemble was constructed by performing 70 1-year long simulations using version 3.3 of the WRF model by combining six cumulus, four surface/planetary boundary layer and three radiation schemes. Results show that evaporation variability across the multi-physics ensemble (~10 % of the mean evaporation) is dominated by the choice of the surface layer scheme that explains more than ~70 % of the total variance and that the overestimation of evaporation in WRF simulations is generally related with an overestimation of surface exchange coefficients due to too large values of the surface roughness parameter and/or the simulation of too unstable surface conditions. Although the influence of radiation schemes on evaporation variability is small (~13 % of the total variance), radiation schemes strongly influence exchange coefficients and vertical humidity gradients near the surface due to modifications of temperature lapse rates. The precipitation variability across the physics ensemble (~35 % of the mean precipitation) is dominated by the choice of both cumulus (~55 % of the total variance) and planetary boundary layer (~32 % of the total variance) schemes with a strong regional dependence. Most members of the ensemble underestimate total precipitation amounts with biases as large as 250 mm yr?1 over the whole Mediterranean Sea compared with ERA Interim reanalysis mainly due to an underestimation of the number of wet days. The larger number of dry days in simulations is associated with a deficit in the activation of cumulus schemes. Both radiation and planetary boundary layer schemes influence precipitation through modifications on the available water vapor in the boundary layer generally tied with changes in evaporation.  相似文献   
70.
The dominant phosphorus compound classes were characterized in marine samples using a new, high recovery method for isolating and concentrating bulk dissolved organic matter (DOM) called combined electrodialysis + reverse osmosis (ED/RO). In contrast to earlier studies that use ultrafiltration (UF) to recover only the high molecular weight DOM, ED/RO is capable of isolating both low molecular weight (LMW) and high molecular weight (HMW) DOM. Samples were collected from a broad range of marine environments: along a transect incorporating coastal and offshore waters off the Southeastern United States, in Effingham Inlet, a Pacific fjord located on Vancouver Island, British Columbia and in the Amundsen Sea, Antarctica. Results from phosphorus nuclear magnetic resonance (31P NMR) analysis reveal a similar abundance of P compound classes among samples, phosphate esters (80–85%), phosphonates (5–10%) and polyphosphates (8–13%). These samples contain significantly higher proportions of polyphosphate P and P esters and lower proportions of phosphonates than measured in previous studies using the UF method. The much higher levels of polyphosphate detected in our samples suggests that polyphosphate is present mainly in the LMW dissolved matter fraction. Polyphosphates in dissolved matter may be present as (or derived from) dissolved nucleotides or organismal polyphosphate bodies, or both. Low molecular weight P esters are possibly composed of phosphoamino acids and small carbohydrates, like simple sugar phosphates and/or dissolved nucleotides. Phosphonates in DOM are more prevalent as HMW phosphonate compounds, which suggests that LMW phosphonates are more readily utilized in marine ecosystems. Overall, the investigation of DOM across a size spectrum that includes both the HMW and the LMW fractions reveals a new picture of phosphorus distribution, cycling and bioavailability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号