首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   0篇
大气科学   11篇
地球物理   18篇
地质学   29篇
海洋学   20篇
天文学   3篇
综合类   1篇
自然地理   6篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   2篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   14篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有88条查询结果,搜索用时 421 毫秒
11.
Llaima and Villarrica are two of the most active volcanoes in the Chilean Southern Volcanic Zone and presently show contrasting types of activity. Llaima is a closed vent edifice with fumarolic activity, while Villarrica has an open vent with a lava lake, continuous degassing and tremor activity. This study is focused on characterizing the relationships between volcanic and seismic activity in the months before and after the 2010 M8.8 Maule earthquake, which was located in NNW direction from the volcanoes. Time series for tremors, long-period and volcano-tectonic events were obtained from the catalogue of the Volcanic Observatory of the Southern Andes (OVDAS) and from the SFB 574 temporary volcanic network. An increase in the amount of tremor activity, long-period events and degassing rates was observed at Villarrica weeks before the mainshock and continued at a high level also after it. This increase in activity is interpreted to be caused by enhanced magma influx at depth and may be unrelated to the Maule event. In Llaima, an increase in the volcano-tectonic activity was observed directly after the earthquake. The simultaneous post-earthquake activity at both volcanoes is consistent with a structural adjustment response. Since this enhanced activity lasted for more than a year, we suggest that it is related to a medium-term change in the static stress. Thus, the Maule earthquake may have affected both volcanoes, but did not trigger eruptions, from which we assume that none of the volcanoes were in a critical state.  相似文献   
12.
13.
Extracellular peptide hydrolysis rates were measured in seawater and sediment from Flax Pond salt marsh using peptide analogs (LYA-peptides) as substrates. This technique allows the direct measurement of specific hydrolysis products and thus provides insights into enzymatic hydrolysis pathways. In sediments, hydrolysis rate constants of LYA-peptides varied seasonally and with depth. Highest activity was found in spring and summer, and most cores exhibited a subsurface maximum. Calculations using the concentrations of chemically-measured peptides suggested that extracellular hydrolysis of peptides is faster than the rate of free amino acids uptake. However, not all peptides may be available for enzymatic hydrolysis. In both seawater and sediment, extracellular hydrolysis of peptides of up to 8 amino acids yielded smaller peptides and free amino acids. Hydrolysis rates depended on size of the peptide substrate, although a clear relationship with number of amino acid constituents was not evident. Peptides containing >2 amino acids were hydrolyzed 10–400 times faster than dipeptides or the fluorogenic substrate Leucine-MCA. Thus, dipeptidases are either uncommon in nature, or hydrolysis is carried out by nonspecific hydrolases that with a low affinity for dipeptides. This is also suggested by the presence of a lag time before dipeptide hydrolysis begins, and the absence of dipeptide hydrolysis in 0.2-μm-filtered. One implication of this finding is that measurements of hydrolysis rates using substrates like Leu-MCA may not accurately predict the magnitude of hydrolysis rates of macromolecules in the marine environment. Even though dipeptide hydrolysis is slow compared to that of larger peptides, LYA-dipeptides are preferentially produced from the hydrolysis of larger substrates. LYA-dipeptides do not penetrate cell membranes of microorganisms because of their size, but natural dipeptides are smaller and can be transported across the cell membrane. Since dipeptides do not appear to accumulate in natural waters, they must be rapidly removed by microorganisms.  相似文献   
14.
This work is inspired by the sudden resurgence of the submersed aquatic vegetation (SAV) bed in the Chesapeake Bay (USA). Because the SAV bed occurs at the mouth of the Bay's main tributary (Susquehanna River), it plays a significant role in modulating sediment and nutrient inputs from the Susquehanna to the Bay. Previous model studies on the impact of submersed aquatic vegetation on the development of river mouth bars lacked a complete mechanistic understanding. This study takes advantage of new advances in 3D computational models that include explicit physical-sedimentological feedbacks to obtain this understanding. Specifically, we used Delft3D, a state-of-the-art hydrodynamic model that provides fine-scale computations of three-dimensional flow velocity and bed shear stress, which can be linked to sediment deposition and erosion. Vegetation is modeled using a parameterization of hydraulic roughness that depends on vegetation height, stem density, diameter, and drag coefficient. We evaluate the hydrodynamics, bed shear stresses, and sediment dynamics for different vegetation scenarios under conditions of low and high river discharge. Model runs vary the vegetation height, density, river discharge, and suspended-sediment concentration. Numerical results from the idealized model show that dense SAV on river mouth bars substantially diverts river discharge into adjacent channels and promotes sediment deposition at ridge margins, as well as upstream bar migration. Increasing vegetation height and density forms sandier bars closer to the river mouth and alteration of the bar shape. Thus, this study highlights the important role of SAV in shaping estuarine geomorphology, which is especially relevant for coastal management. © 2019 John Wiley & Sons, Ltd.  相似文献   
15.
This study assesses spatial and temporal sedimentological trends in four mesohaline Chesapeake Bay submersed aquatic vegetation (SAV) habitats, two with persistent SAV beds and two with ephemeral SAV beds, to determine their relationship to current and historical sediment characteristics??grain size, organic content, and accumulation rates. In general, grain size is similar among all sites, and subsurface sediment differs from surficial sediment only at one site where a thin surficial sand layer (??2?C3?cm) is present. This thin sand layer is not completely preserved in the longer-term sedimentary record even though it is critical to determining whether the sediment is suitable for SAV. Evidence for nearshore fining, similar to that observed in the deeper waters of the Bay, is present at the site where the shoreline has been hardened suggesting that locations with hardened shorelines limit exchange of coarser (sandy) material between the shore and nearshore environments. Whether the fining trend will continue to a point at which the sediment will become unsuitable for SAV in the future or whether some new type of equilibrium will be reached cannot be addressed with our data. Instead, our data suggest that SAV presence/absence is related to changes in sedimentary characteristics??persistent beds have relatively steady sediment composition, while ephemeral beds have finer sediments due to reduced sand input. Additionally, sediment accumulation rates in the persistent beds are ??9?mm/year, whereas rates in the ephemeral beds are ??3?mm/year. Thus, the ephemeral sites highlight two potential sedimentary controls on SAV distribution: the presence of a sufficiently thick surficial sand layer as previously postulated by Wicks (2005) and accumulation rates high enough to bury seeds prior to germination and/or keep up with sea-level rise.  相似文献   
16.
Minnesota forested soils have evolved without the presence of earthworms since the last glacial retreat. When exotic earthworms arrive, enhanced soil bioturbation often results in dramatic morphological and chemical changes in soils with negative implications for the forests’ sustainability. However, the impacts of earthworm invasion on geochemical processes in soils are not well understood. This study attempts to quantify the role of earthworm invasion in mineral chemical weathering and nutrient dynamics along an earthworm invasion chronosequence in a sugar maple forest in Northern Minnesota. Depth and rates of soil mixing can be tracked with atmospherically derived short lived radioisotopes 210Pb and 137Cs. Their radioactivities increase in the lower A horizon at the expense of the peak activities near the soil surface, which indicate that soil mixing rate and its depth reach have been enhanced by earthworms. Enhanced soil mixing by earthworms is consistent with the ways that the vertical profiles of elemental and mineralogical compositions were affected by earthworm invasion. Biologically cycled Ca and P have peak concentrations near the soil surface prior to earthworm invasion. However, these peak abundances significantly declined in the earthworm invaded soils presumably due to enhanced soil mixing. It is clear that enhanced soil mixing due to earthworms also profoundly altered the vertical distribution of most mineral species within A horizons. Though the mechanisms are not clear yet, earthworm invasion appears to have contributed to net losses of clay mineral species and opal from the A horizons. As much as earthworms vertically relocated minerals and elements, they also intensify the contacts between organic matter and cations as shown in the increased amount of Ca and Fe in organically complexed and in exchangeable pools. With future studies on soil mixing rates and elemental leaching, this study will quantitatively and mechanically address the role of earthworms in geochemical evolution of soils and forests’ nutrient dynamics.  相似文献   
17.
In this study, we used data recorded by two consecutive passive broadband deployments on the Gulf of Aden northern margin, Dhofar region, Sultanate of Oman. The objective of these deployments is to map the young eastern Gulf of Aden passive continental margin crust and upper mantle structure and rheology. In this study, we use shear-wave splitting analysis to map lateral variations of upper mantle anisotropy beneath the study area. In this study, we found splitting magnitudes to vary between 0.33 and 1.0 s delay times, averaging about 0.6 s for a total of 17 stations from both deployment periods. Results show distinct abrupt lateral anisotropy variation along the study area. Three anisotropy zones are identified: a western zone dominated by NW–SE anisotropy orientations, an eastern zone dominated with NE–SW anisotropy orientations, and central zone with mixed anisotropy orientations similar to the east and west zones. We interpret these shorter wavelength anisotropy zones to possibly represent fossil lithospheric mantle anisotropy. We postulate that the central anisotropy zone may be representing a Proterozoic suture zone that separates two terranes to the east and west of it. The anisotropy zones west and east were being used indicative of different terranes with different upper mantle anisotropy signatures.  相似文献   
18.
Investigations on how desiccation changes sorption of organic compounds by salt marsh sediments provide insight into the physical and chemical properties of these wide-spread coastal sediments. We measured sorption of compounds with different polarities (lysine, tyrosine, naphthalene and aniline) onto natural sediments and sediments that were dried and rewetted. Sorption of lysine by marsh sediment decreased significantly when the sediment was dried using a freeze-drier, oven, or desiccator, and sorption capacity was not restored when sediments were rewetted. In contrast to lysine, the sorption capacity of more hydrophobic compounds (tyrosine, aniline and naphthalene) increased significantly after salt marsh sediment was dried. These results suggest that drying greatly increased sediment hydrophobicity. Consistently, water drop penetration time, an index of hydrophobicity, was significantly lower for combusted sediments than for those that were simply dried. Sediments treated with EDTA, or boiled in seawater, exhibited a similar or even greater reduction in lysine sorption capacity compared with sediments that were dried. Water retention capacity of salt marsh sediment decreased 50% after sediment was dried. The effects of pH and salinity on lysine sorption in wet and dry sediments suggest that carboxyl groups play a major role in lysine sorption through cation ion exchange, and drying may reduce access to carboxyl groups. We hypothesize that the three-dimensional (3D) structure of organic matter, originating mainly from Spartina alterniflora, is an important factor controlling sorption capacity in salt marsh sediment. The drying process makes sedimentary organic matter change conformation, shrink in volume, and expose hydrophobic groups, thus becoming more hydrophobic. In environments with wet and dry cycles, the distribution of hydrophobic or hydrophilic compounds between solution and particulate phases could thus be influenced by the 3D structure and polarity of organic matter.  相似文献   
19.
A fungal epizootic in mussels at a deep-sea hydrothermal vent   总被引:1,自引:0,他引:1  
Mass mortalities due to disease are important determinants of population and community structure in marine ecosystems, but the speed at which an epizootic may sweep through a population, combined with rapid selection for disease‐resistant stocks, can mask the ecological impact of disease in all but the most closely monitored populations. We document an emergent epizootic event in the deep sea that is occurring in mussels (Bathymodiolus brevior) at the Mussel Hill hydrothermal vent in Fiji Basin and we identify the causal agent as a black yeast (order Chaetothyriales) that elicits a pronounced host immune response and is associated with tissue deterioration. The yeast was not observed in other invertebrate taxa (the gastropods Ifremeria nautilei, Alviniconcha aff. hessleri; the limpets Lepetodrilus schrolli, Symmetromphalus aff. hageni; the polychaetes Branchipolynoe pettiboneae, Amphisamytha cf. galapagensis) associated with the mussel bed, nor in mussels (Bathymodiolus brevior) collected from adjacent Lau Basin mussel beds. Massive mussel mortality resulting from the fungal infection is anticipated at the Mussel Hill site in Fiji Basin; we expect that epizootic outbreaks in dense invertebrate communities have the potential to be major determinants of community structure in deep‐sea chemosynthetic ecosystems. The possibility that submersible assets may serve as vectors for transport of the fungus warrants further attention.  相似文献   
20.
Characterization of the proteinaceous matter in marine aerosols   总被引:1,自引:0,他引:1  
Marine aerosols play a dominant role in the transfer of oceanic material to the atmosphere. Most marine aerosol originates when air bubbles burst at the sea surface ejecting material from the sea surface microlayer and bubble surface layers into the air. Concentrations of chemical compounds in these surface layers often differ from their concentrations in bulk water. We examined the enrichment of aerosols with proteinaceous matter and attempted to characterize the physical nature and sources of this matter. We measured concentrations of dissolved free (DFAA), dissolved combined (DCAA), and particulate (PAA) amino acids, transparent stainable particles (TSP), and bacteria and virus-like particles as carriers of protein, in natural and simulated aerosols. We also evaluated D/L ratios certain amino acids in all amino acid fractions.DFAA and DCAA enriched the aerosols we sampled by 1.2–20 times compared to bulk seawater; PAA enrichment was usually higher (up to 50-fold). Aerosols contained particles typical of seawater, e.g., microorganisms, organic debris, inorganic particles with adsorbed organic matter, but also a large number of semitransparent gel-like particles, which all contained amino acids. Some of these particles were probably scavenged from bulk water, but new particles produced as bubbles burst at the surface comprised at least 10% of total proteinaceous matter in the aerosol. D/L ratios of certain amino acid suggested that the particles were most likely made from dissolved polymers secreted by phytoplankton that were concentrated on bubble surfaces and in the microlayer. Examination with Alcian Blue (a dye that targets carbohydrates) and Coomassie Blue (a dye that targets proteins) showed that most TSP in the aerosols contained both proteins and polysaccharides. Microorganisms enriched the aerosols by up to two orders of magnitude, but contributed less than 4% to the total protein pool.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号