首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9217篇
  免费   445篇
  国内免费   234篇
测绘学   203篇
大气科学   781篇
地球物理   2215篇
地质学   3398篇
海洋学   863篇
天文学   1263篇
综合类   93篇
自然地理   1080篇
  2022年   67篇
  2021年   155篇
  2020年   182篇
  2019年   181篇
  2018年   231篇
  2017年   231篇
  2016年   263篇
  2015年   228篇
  2014年   303篇
  2013年   519篇
  2012年   313篇
  2011年   440篇
  2010年   417篇
  2009年   516篇
  2008年   423篇
  2007年   441篇
  2006年   365篇
  2005年   313篇
  2004年   305篇
  2003年   315篇
  2002年   260篇
  2001年   232篇
  2000年   244篇
  1999年   199篇
  1998年   173篇
  1997年   153篇
  1996年   166篇
  1995年   146篇
  1994年   142篇
  1993年   109篇
  1992年   109篇
  1991年   76篇
  1990年   103篇
  1989年   80篇
  1988年   91篇
  1987年   95篇
  1986年   86篇
  1985年   111篇
  1984年   132篇
  1983年   124篇
  1982年   105篇
  1981年   77篇
  1980年   57篇
  1979年   72篇
  1978年   67篇
  1977年   61篇
  1976年   62篇
  1975年   69篇
  1974年   55篇
  1973年   68篇
排序方式: 共有9896条查询结果,搜索用时 187 毫秒
431.
The California Current System (CCS) is forced by the distribution of atmospheric pressure and associated winds in relation to the west coast of North America. In this paper, we begin with a simplified case of winds and a linear coast, then consider variability characteristic of the CCS, and conclude by considering future change. The CCS extends from the North Pacific Current (~50°N) to off Baja California, Mexico (~15–25°N) with a major discontinuity at Point Conception (34.5°N). Variation in atmospheric pressure affects winds and thus upwelling. Coastal, wind-driven upwelling results in nutrification and biological production and a southward coastal jet. Offshore, curl-driven upwelling results in a spatially large, productive habitat. The California Current flows equatorward and derives from the North Pacific Current and the coastal jet. Dominant modes of spatial and temporal variability in physical processes and biological responses are discussed. High surface production results in deep and bottom waters depleted in oxygen and enriched in carbon dioxide. Fishing has depleted demersal stocks more than pelagic stocks, and marine mammals, including whales, are recovering. Krill, squid, and micronekton are poorly known and merit study. Future climate change will differ from past change and thus prediction of the CCS requires an understanding of its dynamics. Of particular concern are changes in winds, stratification, and ocean chemistry.  相似文献   
432.
433.
434.
In this paper, we compare and contrast a Bayesian spatially varying coefficient process (SVCP) model with a geographically weighted regression (GWR) model for the estimation of the potentially spatially varying regression effects of alcohol outlets and illegal drug activity on violent crime in Houston, Texas. In addition, we focus on the inherent coefficient shrinkage properties of the Bayesian SVCP model as a way to address increased coefficient variance that follows from collinearity in GWR models. We outline the advantages of the Bayesian model in terms of reducing inflated coefficient variance, enhanced model flexibility, and more formal measuring of model uncertainty for prediction. We find spatially varying effects for alcohol outlets and drug violations, but the amount of variation depends on the type of model used. For the Bayesian model, this variation is controllable through the amount of prior influence placed on the variance of the coefficients. For example, the spatial pattern of coefficients is similar for the GWR and Bayesian models when a relatively large prior variance is used in the Bayesian model.   相似文献   
435.
We present an alternate mathematical technique than contemporary spherical harmonics to approximate the geopotential based on triangulated spherical spline functions, which are smooth piecewise spherical harmonic polynomials over spherical triangulations. The new method is capable of multi-spatial resolution modeling and could thus enhance spatial resolutions for regional gravity field inversion using data from space gravimetry missions such as CHAMP, GRACE or GOCE. First, we propose to use the minimal energy spherical spline interpolation to find a good approximation of the geopotential at the orbital altitude of the satellite. Then we explain how to solve Laplace’s equation on the Earth’s exterior to compute a spherical spline to approximate the geopotential at the Earth’s surface. We propose a domain decomposition technique, which can compute an approximation of the minimal energy spherical spline interpolation on the orbital altitude and a multiple star technique to compute the spherical spline approximation by the collocation method. We prove that the spherical spline constructed by means of the domain decomposition technique converges to the minimal energy spline interpolation. We also prove that the modeled spline geopotential is continuous from the satellite altitude down to the Earth’s surface. We have implemented the two computational algorithms and applied them in a numerical experiment using simulated CHAMP geopotential observations computed at satellite altitude (450 km) assuming EGM96 (n max = 90) is the truth model. We then validate our approach by comparing the computed geopotential values using the resulting spherical spline model down to the Earth’s surface, with the truth EGM96 values over several study regions. Our numerical evidence demonstrates that the algorithms produce a viable alternative of regional gravity field solution potentially exploiting the full accuracy of data from space gravimetry missions. The major advantage of our method is that it allows us to compute the geopotential over the regions of interest as well as enhancing the spatial resolution commensurable with the characteristics of satellite coverage, which could not be done using a global spherical harmonic representation. The results in this paper are based on the research supported by the National Science Foundation under the grant no. 0327577.  相似文献   
436.
Modelling and extracting 3D geographical data presents numerous challenges that require continual research to attempt to evolve an efficient, reliable and accurate solution. LiDAR data capture and analysis has become a preferred acquisition choice for elevation data because the resulting quality and level of detail far exceeds traditional methods for large survey areas. As with any data collection system, LiDAR is prone to errors. Analysing these errors, ascertaining causes and producing error correction strategies is vital if accurate and confident results are to be obtained. Eight years of LiDAR datasets (from 1998 to 2005) have been closely analysed for a large coastal area of South Wales. This article provides a detailed and accurate summary of the identified LiDAR data issues and subsequent errors which affect the accuracy of end products such as Digital Surface Models (DSMs).  相似文献   
437.
The origin of acoustically transparent fan deposits overlying glacial till and ice-proximal sediments on the southern margin of the Norwegian Channel has been studied using high-resolution seismic-reflection profiles and multibeam bathymetry. The first deposits overlying glacigenic sediments are a series of stacked, acoustically transparent submarine fans. The lack of glaciomarine sediments below and between individual fans indicates that deposition was rapid and immediately followed the break up of the Late Weichselian ice cover. The fans are overlain by stratified glaciomarine sediments and Holocene mud. Because of the uniformity of this drape, the upper surface of the fan deposits is mimicked at the present seafloor, and the bathymetric images clearly show the spatial relationship of the fans to bedrock ridges and the presence of braided channel-levee systems on the surface of the youngest fans. The acoustically transparent character of the fan deposits indicates that they comprise silt and clay, and their lobate form and lack of internal stratification indicates that they were deposited by debris flows. The channel-levee morphology indicates deposition from more watery hyperconcentrated fluid flows. The fan sediments were either derived from 1) erosion of Mid Weichselian lake deposits in southern Skagerrak or 2) from Late glacial ice-margin lake deposits, ponded against the Norwegian Channel ice stream, which collapsed catastrophically when the lateral support was removed as the ice disintegrated. Fans composed almost exclusively of fine-grained sediment need not, therefore, rule out an origin in a deglacial setting relatively close to the former margins of glaciers and ice sheets.  相似文献   
438.
Otoliths are calcified structures in the head of fish that record environmental information about fish's life history. Gathering the elemental information from the core of an otolith corresponding to the juvenile period of fish's life is critical to discriminate the adult fish to their natal habitats reliably. A high resolution micromill has been used to isolate the otolith core from a whole otolith for elemental analysis. The effects of micromilling procedures (e.g., sectioning, embedding and drilling) on contamination to otolith trace element levels were examined using paired blackfin tuna (Thunnus atlanticus) otoliths. Otoliths were decontaminated by dilute hydrogen peroxide and nitric acid throughout to remove surface contamination. A preconcentration procedure was used to determine the trace elements from the small core material by ICP-MS. It was found that micromilling procedures introduce significant contamination to otoliths, especially for Al, Cu, Pb and Zn. The sectioning procedure caused significant contamination for Co and Cu, while the embedding procedure resulted in contamination for nearly all trace elements (Al, Cd, Co, Cu, Ga, Mn, Ni, Pb, V and Zn). The combined sectioning, embedding and drilling procedure also resulted in contamination for most trace elements. Despite the contamination across all procedural steps, the decontamination procedure effectively removed the surface contamination with the exception of Pb and Zn. Bias (e.g., residual contamination) on Pb was small in comparison to overall concentration of Pb expected to occur in fish otoliths, therefore, its effect may be minor in discriminating individuals. Bias on Zn was larger that could limit its application in discriminating individuals.  相似文献   
439.
Species richness is a measure that is fundamental to many studies in ecology, and it is particularly important on sandy beaches, where it underlies patterns described by the broadly accepted swash exclusion hypothesis. However, its estimation in practice is problematic. This has led ecologists in other fields to adopt extrapolative estimators of species richness, which project the total number of species present in a habitat by adjusting upward the number of species observed by an amount related to the number of rare species encountered in the samples. In so doing, the species richness can be estimated, with confidence intervals, at any level of sampling effort. Despite the availability and advantages of these methods, beach ecologists have continued to use the observed species richness as a point estimate of biodiversity for beaches. Here, we employ a Monte Carlo resampling approach over a range of routine transect designs used to sample sandy beaches, and evaluate the performance of seven non-parametric extrapolative estimators for species richness relative to that of the more conventionally used observed species richness. We find that the first-order Jackknife estimator (Jack 1) is the least biased, most accurate and most consistent across sites. Employing this estimator would allow accurate estimation of species richness on short (tens of metres) stretches of beach without exceeding the acceptable levels of sampling effort (4–5 m2). Spreading this effort evenly over three across-shore transects, each with a minimum of 13 equally spaced levels seems appropriately efficient. Although a greater number of research studies is required to ascertain the generality of these results beyond the beaches we sampled, we tentatively recommend the application of our results in biodiversity surveys on sandy beaches.  相似文献   
440.
Short-time site fidelity and movements of gilthead sea bream (Sparus aurata) in a coastal lagoon were determined using passive acoustic telemetry. Nine fish, ranging from 20.1 to 32.5 cm total length, were surgically implanted with acoustic transmitters and monitored for up to 179 days. Minimum convex polygon areas ranged from 18,698.6 m2 to 352,711.9 m2. Home range sizes were small, with individuals using core areas on a daily basis. However, these core areas shifted within the study site over time towards the opening to the sea. Two different diel behaviors were recorded, with some individuals more active at night and others during day time. Some individuals also demonstrated homing abilities, returning to the capture site after being released more than 4 km away.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号