首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9217篇
  免费   445篇
  国内免费   234篇
测绘学   203篇
大气科学   781篇
地球物理   2215篇
地质学   3398篇
海洋学   863篇
天文学   1263篇
综合类   93篇
自然地理   1080篇
  2022年   67篇
  2021年   155篇
  2020年   182篇
  2019年   181篇
  2018年   231篇
  2017年   231篇
  2016年   263篇
  2015年   228篇
  2014年   303篇
  2013年   519篇
  2012年   313篇
  2011年   440篇
  2010年   417篇
  2009年   516篇
  2008年   423篇
  2007年   441篇
  2006年   365篇
  2005年   313篇
  2004年   305篇
  2003年   315篇
  2002年   260篇
  2001年   232篇
  2000年   244篇
  1999年   199篇
  1998年   173篇
  1997年   153篇
  1996年   166篇
  1995年   146篇
  1994年   142篇
  1993年   109篇
  1992年   109篇
  1991年   76篇
  1990年   103篇
  1989年   80篇
  1988年   91篇
  1987年   95篇
  1986年   86篇
  1985年   111篇
  1984年   132篇
  1983年   124篇
  1982年   105篇
  1981年   77篇
  1980年   57篇
  1979年   72篇
  1978年   67篇
  1977年   61篇
  1976年   62篇
  1975年   69篇
  1974年   55篇
  1973年   68篇
排序方式: 共有9896条查询结果,搜索用时 468 毫秒
321.
We assess the role of fracturing and seismicity on fluid-driven mass transport of helium using groundwaters from the eastern Morongo Basin (EMB), California, USA. The EMB, located ∼200 km east of Los Angeles, lies within a tectonically active region known as the Eastern California Shear Zone that exhibits both strike-slip and extensional deformation. Helium concentrations from 27 groundwaters range from 0.97 to 253.7 × 10−7 cm3 STP g−1H2O, with corresponding 3He/4He ratios falling between 1.0 and 0.26 RA (where RA is the 3He/4He ratio of air). All groundwaters had helium isotope ratios significantly higher than the crustal production value of ∼0.02 RA. Dissolved helium concentrations were resolved into components associated with solubility equilibration, air entrainment, in situ production within the aquifer, and extraneous fluxes (both crustal and mantle derived). All samples contained a mantle helium-3 (3Hem) flux in the range of 4.5 to 1351 × 10−14 cm3 STP 3He cm−2 yr−1 and a crustal flux (J0) between 0.03 and 300 × 10−7 cm3 STP 4He cm−2 yr−1. Groundwaters from the eastern part of the basin contained significantly higher 3Hem and deep crustal helium-4 (4Hedc) concentrations than other areas, suggesting a localized source for these components. 4Hedc and 3Hem are strongly correlated, and are associated with faults in the basin. A shallow thermal anomaly in a >3,000 m deep graben in the eastern basin suggests upflow of fluids through active faults associated with extensional tectonics. Regional tectonics appears to drive large scale crustal fluid transport, whereas episodic hydrofracturing provides an effective mechanism for mantle-crust volatile transport identified by variability in the magnitude of degassing fluxes (3Hem and J0) across the basin.  相似文献   
322.
We conducted a year-long, intensive monitoring program of live aquatic gastropods (Helisoma duryi, Melanoides tuberculata, Physa virgata, Pyrgulopsis sp., and Tyronia sp.) and their host springs in the Ash Meadows National Wildlife Refuge of southern Nevada. Our purpose was to constrain the degree of natural variation in the isotopic values of shell aragonite for gastropods living in near-constant conditions. Inter- and intraspecies variations, as well as within-shell variations, of δ18O and δ13C values for all taxa were larger than predicted based on variations in environmental conditions alone. This result suggests that different organisms growing in identical or nearly identical environmental conditions may not produce shells with equilibrium isotopic compositions and that these offsets from equilibrium may differ by small, but statistically significant amounts. For the gill-breathing, fully aquatic gastropods M. tuberculata, Pyrgulopsis sp., and Tyronia sp., the deviation of measured isotopic values compared to predicted values based on average environmental conditions were consistent with differences between taxa in the seasonal timing of shell growth. Measured values for the lung-breathing gastropods H. duryi and P. virgata were higher for δ18O and lower for δ13C than predicted at isotopic equilibrium, even when accounting for seasonality effects. We suggest that explaining the differences between the shell isotopic composition of lung- and gill-breathing snails requires a combination of both behavioral and physiologic factors. Our results illustrate the potential complexities of interpreting stable isotopic data from fossil gastropod shells even when environmental conditions are nearly constant, and place limitations on the paleoenvironmental deductions that can be made from the isotopic measurements on fossil gastropods.  相似文献   
323.
324.
A simple grid cell‐based distributed hydrologic model was developed to provide spatial information on hydrologic components for determining hydrologically based critical source areas. The model represents the critical process (soil moisture variation) to run‐off generation accounting for both local and global water balance. In this way, it simulates both infiltration excess run‐off and saturation excess run‐off. The model was tested by multisite and multivariable evaluation on the 50‐km2 Little River Experimental Watershed I in Georgia, U.S. and 2 smaller nested subwatersheds. Water balance, hydrograph, and soil moisture were simulated and compared to observed data. For streamflow calibration, the daily Nash‐Sutcliffe coefficient was 0.78 at the watershed outlet and 0.56 and 0.75 at the 2 nested subwatersheds. For the validation period, the Nash‐Sutcliffe coefficients were 0.79 at the watershed outlet and 0.85 and 0.83 at the 2 subwatersheds. The per cent bias was less than 15% for all sites. For soil moisture, the model also predicted the rising and declining trends at 4 of the 5 measurement sites. The spatial distribution of surface run‐off simulated by the model was mainly controlled by local characteristics (precipitation, soil properties, and land cover) on dry days and by global watershed characteristics (relative position within the watershed and hydrologic connectivity) on wet days when saturation excess run‐off was simulated. The spatial details of run‐off generation and travel time along flow paths provided by the model are helpful for watershed managers to further identify critical source areas of non‐point source pollution and develop best management practices.  相似文献   
325.
Snow availability in Alpine catchments plays an important role in water resources management. In this paper, we propose a method for an optimal estimation of snow depth (areal extension and thickness) in Alpine systems from point data and satellite observations by using significant explanatory variables deduced from a digital terrain model. It is intended to be a parsimonious approach that may complement physical‐based methodologies. Different techniques (multiple regression, multicriteria analysis, and kriging) are integrated to address the following issues: We identify the explanatory variables that could be helpful on the basis of a critical review of the scientific literature. We study the relationship between ground observations and explanatory variables using a systematic procedure for a complete multiple regression analysis. Multiple regression models are calibrated combining all suggested model structures and explanatory variables. We also propose an evaluation of the models (using indices to analyze the goodness of fit) and select the best approaches (models and variables) on the basis of multicriteria analysis. Estimation of the snow depth is performed with the selected regression models. The residual estimation is improved by applying kriging in cases with spatial correlation. The final estimate is obtained by combining regression and kriging results, and constraining the snow domain in accordance with satellite data. The method is illustrated using the case study of the Sierra Nevada mountain range (Southern Spain). A cross‐validation experiment has confirmed the efficiency of the proposed procedure. Finally, although it is not the scope of this work, the snow depth is used to asses a first estimation of snow water equivalent resources.  相似文献   
326.
327.
The Sheep Mountain‐Little Sheep Mountain Anticlines, Bighorn Basin (USA) formed as basement‐cored Laramide structures in the formerly undeformed foreland of the thin‐skinned Sevier orogen. We take advantage of the well‐constrained microstructural network there to reconstruct differential stress magnitudes that prevailed during both Sevier and Laramide layer‐parallel shortening (LPS), before the onset of large‐scale folding. Differential stress magnitudes determined from tectonic stylolites are compared and combined to previous stress estimates from calcite twinning paleopiezometry in the same formations. During stress loading related to LPS, differential stress magnitudes transmitted from the distant Sevier thin‐skinned orogen into the sedimentary cover of the Bighorn basin (11–43 MPa) are higher than the differential stress magnitudes accompanying the early stage of LPS related to the thick‐skinned Laramide deformation (2–19 MPa). This study illustrates that the tectonic style of an orogen affects the transmission of early orogenic stress into the stable continental interior.  相似文献   
328.
Shi Nai'an's fourteenth century Chinese epic ‘Water Margin’ tells of the release of 36 heavenly spirits and 72 baleful stars from their captivity beneath a tablet of stone at Mount Longhu in Jiangxi Province. They are reincarnated as the 108 heroes of the Liangshan marsh in Shandong Province, who rise against an unjust world. The virtuous exploits of the ‘108’ were brought to life through the cathode‐ray screens of 1970s television sets, as the TV series The Water Margin introduced heroes like Lin Chong battling his evil nemesis Gao Qiu. Far to the west of Jiangxi Province and several hundred years after the Water Margin during the summer of 1984, a young scientist from Nanjing was working amongst the hills and lakes of southern Yunnan Province. He too overturned a stone slab, releasing from their half‐billion year captivity a cornucopia of new Chinese legends. His name was Xianguang Hou and he had made one of the most momentous fossil discoveries in history, uncovering the exceptionally preserved marine fossils of the Chengjiang biota from the ancient water margin of Cambrian seas.  相似文献   
329.
330.
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in the baseflow fraction of streamflow, assessing whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate baseflow discharge and baseflow dissolved solids loads at stream gages (n = 69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow, indicating that subsurface transport processes play a dominant role in delivering dissolved solids to streams in the UCRB. A statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams (n = 27) from 1986 to 2011. Decreasing trends in baseflow dissolved solids loads were observed at 63% of streams. At the three most downstream sites, Green River at Green River, UT, Colorado River at Cisco, UT, and the San Juan River near Bluff, UT, baseflow dissolved solids loads decreased by a combined 823,000 metric tons (mT), which is approximately 69% of projected basin‐scale decreases in total dissolved solids loads as a result of salinity control efforts. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, landscape changes, and/or climate are reducing dissolved solids transported to streams through the subsurface. Notably, the pace and extent of decreases in baseflow dissolved solids loads declined during the most recent decade; average decreasing loads during the 2000s (28,200 mT) were only 54% of average decreasing loads in the 1990s (51,700 mT).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号