首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1870篇
  免费   88篇
  国内免费   30篇
测绘学   74篇
大气科学   146篇
地球物理   382篇
地质学   672篇
海洋学   172篇
天文学   331篇
综合类   6篇
自然地理   205篇
  2023年   12篇
  2022年   7篇
  2021年   39篇
  2020年   47篇
  2019年   65篇
  2018年   70篇
  2017年   73篇
  2016年   93篇
  2015年   76篇
  2014年   74篇
  2013年   145篇
  2012年   82篇
  2011年   113篇
  2010年   95篇
  2009年   119篇
  2008年   97篇
  2007年   95篇
  2006年   85篇
  2005年   60篇
  2004年   67篇
  2003年   54篇
  2002年   39篇
  2001年   32篇
  2000年   38篇
  1999年   27篇
  1998年   27篇
  1997年   15篇
  1996年   22篇
  1995年   14篇
  1994年   12篇
  1993年   9篇
  1992年   12篇
  1991年   13篇
  1990年   13篇
  1989年   13篇
  1988年   9篇
  1987年   8篇
  1986年   4篇
  1985年   13篇
  1984年   15篇
  1983年   13篇
  1982年   13篇
  1981年   9篇
  1980年   4篇
  1979年   7篇
  1978年   11篇
  1977年   6篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1988条查询结果,搜索用时 15 毫秒
131.
A sequence of radiocarbon-dated buried trees, buried soils, a carbonate zone, and a molluscan fauna from Carnegie Canyon indicate that between 3200 and 2600 yr B.P. the climate of west-central Oklahoma was drier than today. A high water table accompanied a period of moister climate 2000 to 1000 yr B.P. The water table dropped after 1000 yr B.P. due to a change toward dry conditions.  相似文献   
132.
133.
134.
Contemporary deposition (artificial marker horizon, 3.5 years) and long-term accumulation rates (210Pb profiles, ~150 years) of sediment and associated carbon (C), nitrogen (N), and phosphorus (P) were measured in wetlands along the tidal Savannah and Waccamaw rivers in the southeastern USA. Four sites along each river spanned an upstream-to-downstream salinification gradient, from upriver tidal freshwater forested wetland (TFFW), through moderately and highly salt-impacted forested wetlands, to oligohaline marsh downriver. Contemporary deposition rates (sediment, C, N, and P) were greatest in oligohaline marsh and lowest in TFFW along both rivers. Greater rates of deposition in oligohaline and salt-stressed forested wetlands were associated with a shift to greater clay and metal content that is likely associated with a change from low availability of watershed-derived sediment to TFFW and to greater availability of a coastal sediment source to oligohaline wetlands. Long-term accumulation rates along the Waccamaw River had the opposite spatial pattern compared to contemporary deposition, with greater rates in TFFW that declined to oligohaline marsh. Long-term sediment and elemental mass accumulation rates also were 3–9× lower than contemporary deposition rates. In comparison to other studies, sediment and associated nutrient accumulation in TFFW are lower than downriver/estuarine freshwater, oligohaline, and salt marshes, suggesting a reduced capacity for surface sedimentation (short-term) as well as shallow soil processes (long-term sedimentation) to offset sea level rise in TFFW. Nonetheless, their potentially large spatial extent suggests that TFFW have a large impact on the transport and fate of sediment and nutrients in tidal rivers and estuaries.  相似文献   
135.
During the transition of juveniles from fresh water to estuarine and coastal environments, the survival of Pacific salmon (Oncorhynchus spp.) can be strongly size selective and cohort abundance is partly determined at this stage. Because quantity and quality of food influence juvenile salmon growth, high rates of prey and energy acquisition during estuarine residence are important for survival. Human activities may have affected the foraging performance of juvenile salmon in estuaries by reducing the area of wetlands and by altering the abundance of salmon. To improve our understanding of the effects of wetland loss and salmon density on juvenile salmon foraging performance and diet composition in estuaries, we assembled Chinook salmon (Oncorhynchus tshawytscha) diet and density data from nine US Pacific Northwest estuaries across a gradient of wetland loss. We evaluated the influence of wetland loss and density on juvenile Chinook salmon instantaneous ration and energy ration, two measures of foraging performance, and whether the effect of density varied among estuaries with different levels of wetland loss. We also assessed the influence of wetland loss and other explanatory variables on salmon diet composition. There was no evidence of a direct effect of wetland loss on juvenile salmon foraging performance, but wetland loss appeared to mediate the effect of density on salmon foraging performance and alter salmon diet composition. Specifically, density had no effect on foraging performance in the estuaries with less than 50 % wetland loss but had a negative effect on foraging performance in the estuaries with greater than 50 % wetland loss. These results suggest that habitat loss may interact with density to constrain the foraging performance of juvenile Chinook salmon, and ultimately their growth, during a life history stage when survival can be positively correlated with growth and size.  相似文献   
136.
Understanding rates of nitrogen cycling in estuaries is crucial for understanding their productivity and resilience to eutrophication. Nitrification, the microbial oxidation of ammonia to nitrite and nitrate, links reduced and oxidized forms of inorganic nitrogen and is therefore an important step of the nitrogen cycle. However, rates of nitrification in estuary waters are poorly characterized. In fall and winter of 2011–2012, we measured nitrification rates throughout the water column of all major regions of San Francisco Bay, a large, turbid, nutrient-rich estuary on the west coast of North America. Nitrification rates were highest in regions furthest from the ocean, including many samples with rates higher than those typically measured in the sea. In bottom waters, nitrification rates were commonly at least twice the magnitude of surface rates. Strong positive correlations were found between nitrification and both suspended particulate matter and ammonium concentration. Our results are consistent with previous studies documenting high nitrification rates in brackish, turbid regions of other estuaries, many of which also showed correlations with suspended sediment and ammonium concentrations. Overall, nitrification in estuary waters appears to play a significant role in the estuarine nitrogen cycle, though the maximum rate of nitrification can differ dramatically between estuaries.  相似文献   
137.
Inorganic carbon measurements made in the late 1980s suggest that alkalinity in the waters surrounding the Hawaiian Archipelago is elevated relative to the oligotrophic waters of the North Pacific. These observations have been interpreted as evidence for a “halo” of elevated carbonate saturation state produced by the dissolution of highly soluble magnesium calcites and aragonite on the island platform or in the water column surrounding the islands. If present, this “halo” has implications for air–sea carbon dioxide exchange in Hawaiian waters and may impact the response of coral reef communities to the acidification of the surface waters of the global ocean. The purpose of this study was to assess the magnitude and extent of the elevated calcium carbonate saturation state observed on previous expeditions to this region. Transects were conducted near several atolls in the Northwestern Hawaiian Islands from shallow water adjacent to the forereef to the open ocean 15 km from the island. Hydrographic profiles were collected at each station, and discrete water samples were collected for the measurement of carbon system parameters necessary to compute calcium carbonate saturation state. Our data were compared with observations made at the Hawaii Ocean Time-series site at Station ALOHA and with hydrographic data collected on the WOCE lines in the North Pacific around the archipelago. We did not detect a carbonate dissolution halo around the islands. We conclude that the previously observed halo was probably an analytical artifact, or possibly a result of extreme variability in carbon chemistry surrounding the islands.  相似文献   
138.
Titanite can be found in rocks of wide compositional range, is reactive, growing or regrowing during metamorphic and hydrothermal events, and is generally amenable to U–Pb geochronology. Experimental evidence suggest that titanite has a closure temperature for Pb ranging from 550 to 650°C, and thus titanite dates are commonly interpreted as cooling ages. However, this view has been challenged in recent years by evidence from natural titanite which suggests the closure temperature may be significantly higher (up to 800°C). Here, we investigate titanite in an enclave of migmatitic gneiss included within a granite intrusion. The titanite crystals exhibit textural features characteristic of fluid‐mediated mass transfer processes on length scales of <100 µm. These textural features are associated with variation in both Pb concentrations and distinct U–Pb isotopic compositions. Zr‐in‐titanite thermometry indicates that modification of the titanite occurred at temperatures in excess of 840°C, in the presence of a high‐T silicate melt. The Pb concentration gradients preserved in these titanite crystals are used to determine the diffusivity of Pb in titanite under high‐T conditions. We estimate diffusivities ranging from 2 × 10?22 to 5 × 10?25 m2/s. These results are significantly lower than experimental data predict yet are consistent with other empirical data on natural titanites, suggesting that Pb diffusivity is similar to that of Sr. Thus our data challenge the wide‐held assumption that U–Pb titanite dates only reflect cooling ages.  相似文献   
139.
The oxygen fugacity of the Dar al Gani 476 martian basalt is determined to be quartz-fayalite-magnetite (QFM) −2.3 ± 0.4 through analysis of olivine, low-Ca pyroxene, and Cr-spinel and is in good agreement with revised results from Fe-Ti oxides that yield QFM −2.5 ± 0.7. This estimate falls within the range of oxygen fugacity for the other martian basalts, QFM −3 to QFM −1. Oxygen fugacity in martian basalts correlates with 87Sr/86Sr, 143Nd/144Nd, and La/Yb ratios, indicating that the mantle source of the basalts is reduced and that assimilation of crust-like material controls the oxygen fugacity. This allows constraints to be placed on the oxidation state of the martian mantle and on the nature of assimilated crustal material. The assimilated material may be the product of early and extensive hydrothermal alteration of the martian crust, or it may be amphibole- or phlogopite-bearing basaltic rock within the crust. In either case, water may play a significant role in the oxidation of basaltic magmas on Mars, although it may be secondary to assimilation of ferric iron-rich material.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号