首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1810篇
  免费   81篇
  国内免费   6篇
测绘学   76篇
大气科学   136篇
地球物理   388篇
地质学   715篇
海洋学   134篇
天文学   289篇
综合类   8篇
自然地理   151篇
  2024年   5篇
  2023年   12篇
  2022年   10篇
  2021年   30篇
  2020年   46篇
  2019年   44篇
  2018年   55篇
  2017年   77篇
  2016年   90篇
  2015年   60篇
  2014年   58篇
  2013年   119篇
  2012年   79篇
  2011年   96篇
  2010年   108篇
  2009年   99篇
  2008年   102篇
  2007年   90篇
  2006年   92篇
  2005年   84篇
  2004年   87篇
  2003年   58篇
  2002年   61篇
  2001年   35篇
  2000年   23篇
  1999年   39篇
  1998年   20篇
  1997年   15篇
  1996年   17篇
  1995年   6篇
  1994年   21篇
  1993年   14篇
  1992年   7篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   10篇
  1982年   8篇
  1981年   8篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
排序方式: 共有1897条查询结果,搜索用时 0 毫秒
81.
82.
83.
84.
Páramos, a neotropical alpine grassland-peatland biome of the northern Andes and Central America, play an essential role in regional and global cycles of water, carbon, and nutrients. They act as water towers, delivering water and ecosystem services from the high mountains down to the Pacific, Caribbean, and Amazon regions. Páramos are also widely recognized as a biodiversity and climate change hot spots, yet they are threatened by anthropogenic activities and environmental changes. Despite their importance for water security and carbon storage, and their vulnerability to human activities, only three decades ago, páramos were severely understudied. Increasing awareness of the need for hydrological evidence to guide sustainable management of páramos prompted action for generating data and for filling long-standing knowledge gaps. This has led to a remarkably successful increase in scientific knowledge, induced by a strong interaction between the scientific, policy, and (local) management communities. A combination of well-established and innovative approaches has been applied to data collection, processing, and analysis. In this review, we provide a short overview of the historical development of research and state of knowledge of the hydrometeorology, flux dynamics, anthropogenic impacts, and the influence of extreme events in páramos. We then present emerging technologies for hydrology and water resources research and management applied to páramos. We discuss how converging science and policy efforts have leveraged traditional and new observational techniques to generate an evidence base that can support the sustainable management of páramos. We conclude that this co-evolution of science and policy was able to successfully cover different spatial and temporal scales. Lastly, we outline future research directions to showcase how sustainable long-term data collection can foster the responsible conservation of páramos water towers.  相似文献   
85.
High-pressure (HP) granulites provide telling records of mineral reactions at upper mantle to lower crustal levels and key information on the fate of material in subduction systems. The latter especially applies when they abut eclogite and mantle dunite because such rock associations are crucial for understanding the incompletely known processes at the interface of converging plates. A continental arc, active c. 520–395 Ma ago, formed an enigmatic example of such a rock association in the Songshugou area, Qinling Orogen. To unravel the juxtaposition of the distinct rocks, this study combines petrography, phase equilibria modelling, conventional thermobarometry, and zircon U–Th–Pb–Ti–REE analysis. Two mafic HP granulites, which contain the mineral assemblages garnet–clinopyroxene–plagioclase–rutile–mesoperthite–quartz and garnet–clinopyroxene–plagioclase–rutile, experienced peak metamorphic conditions of ≤1.4 GPa, 860°C and ~1.3 GPa, ≥910°C, respectively. During decompression and cooling, at 489 ± 4 Ma, amphibole lamellae unmixed from a clinopyroxene solid solution and orthopyroxene in part replaced garnet. A felsic HP granulite shows equilibration of garnet, perthite, antiperthite, kyanite, quartz, and rutile at 810–860°C, ~1.2 GPa, sillimanite growth during decompression, and upper amphibolite facies cooling at 510 ± 4 Ma. Though the thermobarometric data are just within the methodological errors, the U/Pb zircon ages imply the HP granulites did not evolve coherently. The HP granulites either represent foundered lower arc crust or originated from subduction erosion because their geochemistry is indistinguishable from that of the hanging-wall plate. Published and new pressure–temperature–time–deformation paths converge at ~710°C, ~0.9 GPa, and ≲470 Ma, implying exhumation tectonics juxtaposed the HP granulites with a mélange of eclogite and mantle dunite at lower crustal levels. This study highlights that lower arc crust can comprise material of diverse evolution.  相似文献   
86.
Carbonate drifts have so far not been as intensely investigated as their siliciclastic equivalents, especially from an ichnological perspective. The aim of this work is therefore to provide an overview of the different bioturbation styles in carbonate drifts for ichnologists and sedimentologists working in such deposits. Different types of carbonate drifts from the Maldives were studied to address this objective. The cores recovered during International Ocean Discovery Program Expedition 359 were examined to provide the sedimentological and ichnological data for a detailed analysis of the ichnology of carbonate drifts. The ichnological characteristics of the Maldives drifts are compared to other carbonate drifts in order to discuss similarities and differences, and thus provide an overview of the general characteristics of carbonate drift ichnology. These drifts are located in the Santaren Channel which lines Great Bahama Bank, along the Marion Plateau in Australia, in the Limassol and Larnaca basins in Cyprus and in the Danish Basin in Denmark. The common characteristics of bioturbation in carbonate drifts are: (i) the complete bioturbation of the sediment with bioturbation indexes between four and six; (ii) the occurrence of distinctive trace fossils limited to facies contacts or condensed intervals; (iii) a typical ichnoassemblage consisting of Thalassinoides, Scolicia, Planolites, Zoophycos, Chondrites, Phycosiphon and Palaeophycus; (iv) the contiguous occurrence of ichnogenera from different tiers, with only Zoophycos and Chondrites as deep tiers; and (v) distinct infills of the traces including particulate organic matter, pyrite, silica and celestine. In addition, the main ichnofacies of carbonate drifts is the Zoophycos ichnofacies. Ichnofabrics grade from coarse‐grained and completely bioturbated to ichnofabrics with present to rare trace fossils and preserved sedimentary structures. The type and intensity of the bioturbation is controlled by the amount of organic matter and the oxygenation at the sea floor that is determined by the action of bottom currents and the sea‐level fluctuations affecting the carbonate factory in carbonate platforms bordering the basins where the carbonate drifts form. The study of the bioturbation in core and outcrop provides palaeoenvironmental information about carbonate‐drift deposits that complement the classical sedimentological data.  相似文献   
87.
Reconstructions of the timing and frequency of past eruptions are important to assess the propensity for future volcanic activity, yet in volcanic areas such as the East African Rift only piecemeal eruption histories exist. Understanding the volcanic history of scoria-cone fields, where eruptions are often infrequent and deposits strongly weathered, is particularly challenging. Here we reconstruct a history of volcanism from scoria cones situated along the eastern shoulders of the Kenya–Tanzania Rift, using a sequence of tephra (volcanic ash) layers preserved in the ~250-ka sediment record of Lake Chala near Mount Kilimanjaro. Seven visible and two non-visible (crypto-) tephra layers in the Lake Chala sequence are attributed to activity from the Mt Kilimanjaro (northern Tanzania) and the Chyulu Hills (southern Kenya) volcanic fields, on the basis of their glass chemistry, textural characteristics and known eruption chronology. The Lake Chala record of eruptions from scoria cones in the Chyulu Hills volcanic field confirms geological and historical evidence of its recent activity, and provides first-order age estimates for seven previously unknown eruptions. Long and well-resolved sedimentary records such as that of Lake Chala have significant potential for resolving regional eruption chronologies spanning hundreds of thousands of years.  相似文献   
88.
The weathering of mantle peridotite tectonically exposed to the atmosphere leads commonly to natural carbonation processes. Extensive cryptocrystalline magnesite veins and stock-work are widespread in the serpentinite sole of the New Caledonia ophiolite. Silica is systematically associated with magnesite. It is commonly admitted that Mg and Si are released during the laterization of overlying peridotites. Thus, the occurrence of these veins is generally attributed to a per descensum mechanism that involves the infiltration of meteoric waters enriched in dissolved atmospheric CO2. In this study, we investigate serpentinite carbonation processes, and related silicification, based on a detailed petrographic and crystal chemical study of serpentinites. The relationships between serpentine and alteration products are described using an original method for the analysis of micro-X-ray fluorescence images performed at the centimeter scale. Our investigations highlight a carbonation mechanism, together with precipitation of amorphous silica and sepiolite, based on a dissolution–precipitation process. In contrast with the per descensum Mg/Si-enrichment model that is mainly concentrated in rock fractures, dissolution–precipitation process is much more pervasive. Thus, although the texture of rocks remains relatively preserved, this process extends more widely into the rock and may represent a major part of total carbonation of the ophiolite.  相似文献   
89.
The base metal sulfides of the Merensky Reef are associated with hydrous silicates and intense deuteric hydrous alteration of cumulus and postcumulus silicates. Biotite and phlogopite crystallized in the vicinity of sulfides from a volatile-enriched highly fractionated intercumulus melt. Amphibole, chlorite, and talc are later alteration phases of cumulus pyroxene and intercumulus plagioclase. Biotite is often accompanied by zircon, rutile, and quartz. Accessory quartz hosts a complex suite of H2O-NaCl-(CaCl2)-CO2-CH4 fluid inclusions which have thus far not been described from the Merensky Reef. The earliest fluid inclusion compositions are NaCl-(H2O) with less than 10 vol.% water; CO2 coexisting with a halite daughter crystal and brine; and polyphase inclusions with up to six daughter and accidental phases and high contents of divalent cations. The maximum trapping temperature is around 730° C at 4 to 5 kb pressure. Later inclusion generations are H2O-NaCl, CO2-H2O, and pure CO2 and CH4. The presence of Cl-rich fluids during the intercumulus stage of the crystallizing Merensky Reef is directly related to the mode of sulfide precipitation. Prior to sulfide unmixing in a hydrous magma sulfur is likely to be present as H2S. Sulfur saturation causes reaction of H2S with oxides of the silicate melt to form a sulfide melt plus water. During reaction the magma is enriched in water until a separate fluid unmixes. It carries all compounds with high fluid/melt partition coefficients, as well as metals capable of forming OH- and Cl-complexes. Precious metals are assumed to have fractionated into the Cl-rich fluid as Cl-complexes rather than being dissolved in the sulfide melt. During the cooling evolution of the fluid the precious elements precipitate around the periphery of sulfide melt droplets. The model proposed explains the distribution pattern of platinum-group minerals in the Merensky Reef better than any orthomagmatic mineralization concept offered so far.  相似文献   
90.
Abstract— The Crow Creek Member is one of several marl units recognized within the Upper Cretaceous Pierre Shale Formation of eastern South Dakota and northeastern Nebraska, but it is the only unit that contains shock‐metamorphosed minerals. The shocked minerals represent impact ejecta from the 74‐Ma Manson impact structure (MIS). This study was aimed at determining the bulk chemical compositions and analysis of planar deformation features (PDFs) of shocked quartz; for the basal and marly units of the Crow Creek Member. We studied samples from the Gregory 84‐21 core, Iroquois core and Wakonda lime quarry. Contents of siderophile elements are generally high, but due to uncertainties in the determination of Ir and uncertainties in compositional sources for Cr, Co, and Ni, we could not confirm an extraterrestrial component in the Crow Creek Member. We recovered several shocked quartz grains from basal‐unit samples, mainly from the Gregory 84‐21 core, and results of PDF measurements indicate shock pressures of at least 15 GPa. All the samples are composed chiefly of SiO2 (29–58 wt%), Al2O3 (6–14 wt%), and CaO (7–30 wt%). When compared to the composition of North American Shale Composite, the samples are significantly enriched in CaO, P2O5, Mn, Sr, Y, U, Cr, and Ni. The contents of rare earth elements (REE), high field strength elements (HFSE), Cr, Co, Sc, and their ratios and chemical weathering trends, reflect both felsic and basic sources for the Crow Creek Member, an inference, which is consistent with the lithological compositions in the environs of the MIS. The high chemical indices of alteration and weathering (CIA' and CIW': 75–99), coupled with the Al2O3‐(CaO*+Na2O)‐K2O (A‐CN'‐K) ratios, indicate that the Crow Creek Member and source rocks had undergone high degrees of chemical weathering. The expected ejecta thicknesses at the sampled locations (409 to 219 km from Manson) were calculated to range from about 1.9 to 12.2 cm (for the present‐day crater radius of Manson), or 0.4 to 2.4 cm (for the estimated transient cavity radius). The trend agrees with the observed thicknesses of the basal unit of the Crow Creek Member, but the actually observed thicknesses are larger than the calculated ones, indicating that not all of the basal unit comprises impact ejecta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号