首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1279篇
  免费   79篇
  国内免费   18篇
测绘学   62篇
大气科学   104篇
地球物理   327篇
地质学   363篇
海洋学   89篇
天文学   293篇
综合类   2篇
自然地理   136篇
  2023年   1篇
  2022年   1篇
  2021年   32篇
  2020年   31篇
  2019年   38篇
  2018年   51篇
  2017年   37篇
  2016年   47篇
  2015年   49篇
  2014年   48篇
  2013年   76篇
  2012年   61篇
  2011年   68篇
  2010年   54篇
  2009年   84篇
  2008年   66篇
  2007年   65篇
  2006年   75篇
  2005年   70篇
  2004年   67篇
  2003年   55篇
  2002年   52篇
  2001年   43篇
  2000年   27篇
  1999年   34篇
  1998年   31篇
  1997年   12篇
  1996年   11篇
  1995年   11篇
  1994年   11篇
  1993年   8篇
  1992年   4篇
  1991年   6篇
  1990年   1篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1376条查询结果,搜索用时 15 毫秒
631.
The effect of the formation of a major subglacial drainage channel on the behaviour of the subglacial drainage system of Haut Glacier d'Arolla, Switzerland, was investigated using measurements of borehole water level and the electrical conductivity and turbidity of basal meltwaters. Electrical conductivity profiles were also measured within borehole water columns to identify the water sources driving water level changes, and to determine patterns of water circulation in boreholes. Prior to channel formation, boreholes showed idiosyncratic and poorly coordinated behaviour. Diurnal water level fluctuations were small and driven by supraglacial/englacial water inputs, even when boreholes were connected to a subglacial drainage system. This system appeared to consist of hydraulically impermeable patches interspersed with storage spaces, and transmitted a very low water flux. Drainage reorganization, which occurred around 31 July, 1993, in response to rapidly rising meltwater and rainfall inputs, seems to have involved the creation of a connection between an incipient channel and a well-established channelized system located further down-glacier. Once a major channel existed within the area of the borehole array, borehole water level fluctuations were forced by discharge-related changes in channel water pressure, although a diversity of responses was observed. These included (i) synchronous, (ii) damped and lagged, (iii) inverse, and (iv) alternating inverse/lagged responses. Synchronous responses occurred in boreholes connected directly to the channel, while damped and lagged responses occurred in boreholes connected to it by a more resistive drainage system. Pressure variations within the channel resulted in diurnal transfer of mechanical support for the ice overburden between connected and unconnected areas of the bed, producing inverse and alternating patterns of water level response. © 1998 John Wiley & Sons, Ltd.  相似文献   
632.
High‐resolution measurements of rainfall, water level, pH, conductivity, temperature and carbonate chemistry parameters of groundwater at two adjacent locations within the peak cluster karst of the Guilin Karst Experimental Site in Guangxi Province, China, were made with different types of multiparameter sonde. The data were stored using data loggers recording with 2 min or 15 min resolution. Waters from a large, perennial spring represent the exit for the aquifer's conduit flow, and a nearby well measures water in the conduit‐adjacent, fractured media. During flood pulses, the pH of the conduit flow water rises as the conductivity falls. In contrast, and at the same time, the pH of groundwater in the fractures drops, as conductivity rises. As Ca2+ and HCO3? were the dominant (>90%) ions, we developed linear relationships (both r2 > 0·91) between conductivity and those ions, respectively, and in turn calculated variations in the calcite saturation index (SIC) and CO2 partial pressure (P) of water during flood pulses. Results indicate that the P of fracture water during flood periods is higher than that at lower flows, and its SIC is lower. Simultaneously, P of conduit water during the flood period is lower than that at lower flows, and its SIC also is lower. From these results we conclude that at least two key processes are controlling hydrochemical variations during flood periods: (i) dilution by precipitation and (ii) water–rock–gas interactions. To explain hydrochemical variations in the fracture water, the water–rock–gas interactions may be more important. For example, during flood periods, soil gas with high CO2 concentrations dissolves in water and enters the fracture system, the water, which in turn has become more highly undersaturated, dissolves more limestone, and the conductivity increases. Dilution of rainfall is more important in controlling hydrochemical variations of conduit water, because rainfall with higher pH (in this area apparently owing to interaction with limestone dust in the lower atmosphere) and low conductivity travels through the conduit system rapidly. These results illustrate that to understand the hydrochemical variations in karst systems, considering only water–rock interactions is not sufficient, and the variable effects of CO2 on the system should be evaluated. Consideration of water–rock–gas interactions is thus a must in understanding variations in karst hydrochemistry. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
633.
Carbonate rock outcrops cover 9%–16% of the continental area and are the principal source of the dissolved inorganic carbon (DIC) transferred by rivers to the oceans, a consequence their dissolution. Current estimations suggest that the flux falls between 0.1–0.6 PgC/a. Taking the intermediate value (0.3 PgC/a), it is equal to 18% of current estimates of the terrestrial vegetation net carbon sink and 38% of the soil carbon sink. In China, the carbon flux from carbonate rock dissolution is estimated to be 0.016 PgC/a, which accounts for 21%, 87.5%–150% and 2.3 times of the forest, shrub and grassland net carbon sinks respectively, as well as 23%–40% of the soil carbon sink flux. Carbonate dissolution is sensitive to environmental and climatic changes, the rate being closely correlated with precipitation, temperature, also with soil and vegetation cover. HCO3- in the water is affected by hydrophyte photosynthesis, resulting in part of the HCO3? being converted into DOC and POC, which may enhance the potential of carbon sequestration by carbonate rock dissolution. The possible turnover time of this carbon is roughly equal to that of the sea water cycle (2000a). The uptake of atmospheric/soil CO2 by carbonate rock dissolution thus plays an important role in the global carbon cycle, being one of the most important sinks. A major research need is to better evaluate the net effect of this sink in comparison to an oceanic source from carbonate mineral precipitation.  相似文献   
634.
High‐energy gamma rays (HEGRs) from Ceres’s surface were measured using Dawn's Gamma Ray and Neutron Detector (GRaND). Models of cosmic‐ray‐initiated gamma ray production predict that the HEGR flux will inversely vary with single‐layer hydrogen concentrations for Ceres‐like compositions. The measured data confirm this prediction. The hydrogen‐induced variations in HEGR rates were decoupled from the measurements by detrending the HEGR data with Ceres single‐layer hydrogen concentrations determined by GRaND neutron measurements. Models indicate that hydrogen‐detrended HEGR counting rates correlate with water‐free average atomic mass, which is denoted as <A>*. HEGR variations across Ceres’s surface are consistent with <A>* variations of ±0.5 atomic mass units. Chemical variations in the CM and CI chondrites, our closest analogs to Ceres’s surface, suggest that <A>* variations on Ceres are primarily driven by variations in the concentration of Fe, although other elements such as Mg and S could contribute. Dawn observations have shown that Ceres’s interior structure and surface composition have been modified by some combination of physical (i.e., ice‐rock fractionation) and/or chemical (i.e., alteration) processes that has led to variations in bulk surface chemistry. Locations of the highest inferred <A>* values, and thus possibly the highest Fe and least altered materials, tend to be younger, less cratered surfaces that are broadly associated with the impact ejecta of Ceres’s largest craters.  相似文献   
635.
We study the interplay of various factors causing vertical grain-size changes in alluvial basins using a simple coupled model for sediment transport and downstream partitioning of grain sizes. The sediment-transport model is based on the linear diffusion equation; by deriving this from first principles we show that the main controls on the diffusivity are water discharge and stream type (braided or single-thread). The grain-size partitioning model is based on the assumption that the deposit is dominated by gravel until all gravel in transport has been exhausted, at which point deposition of the finer fractions begins. We then examine the response of an alluvial basin to sinusoidal variation in each of four basic governing variables: input sediment flux, subsidence rate, supplied gravel fraction, and diffusivity (controlled mainly by water flux). We find that, except in the case of variable gravel fraction, the form of the basin response depends strongly on the time-scale over which the variation occurs. There is a natural time-scale for any basin, which we call the ‘equilibrium time’, defined as the square of basin length divided by the diffusivity. We define ‘slow’ variations in imposed independent variables as those whose period is long compared with the equilibrium time. We find that slow variation in subsidence produces smoothly cyclic gravel-front migration, with progradation during times of low sedimentation rate, while slow variation in sediment flux produces gravel progradation during times of high sedimentation rate. Slow variation in diffusivity produces no effect. Conversely, we define ‘rapid’ variations as those whose period is short compared with the equilibrium time. Our model results suggest that basins respond strongly to rapid variation in either sediment flux or diffusivity; in both cases, deep proximal unconformities are associated with abrupt gravel progradation. This progradation occurs during times of either low sediment flux or high diffusivity. On the other hand, basin response to variation in subsidence rate gradually diminishes as the time scale becomes short relative to the equilibrium time. Each of the four variables we have considered - input sediment flux, subsidence, gravel fraction, and diffusivity - is associated with a characteristic response pattern. In addition, the time scale of imposed variations relative to the equilibrium time acts in its own right as a fundamental control on the form of the basin response.  相似文献   
636.
利用多参数自动记录仪对桂林岩溶试验场的降水量、水位、水温、pH值和电导率进行了监测,数据采集间隔根据参数变化的程度由2min到1h不等。结果发现,岩溶裂隙水在洪水期间pH值呈降低趋势,而电导率呈升高的不寻常变化。与此相反,对于岩溶管道水,同样是在洪水期间,它的pH值是升高的,而电导率呈正常的降低。考虑到Ca2 和HCO-3分别为地下水中主要的阴阳离子(>90%),及它们与电导率的线性关系,计算得到了洪水期间方解石的饱和指数(SIc)和水的CO2分压(Pco2)的变化情况。发现洪水时裂隙水的Pco2高于正常情况的Pco2,而它的SIc值比正常情况低。与此相对,对于管道水,尽管同一洪水期间其SIc降低,但Pco2也降低。从这些结果,可以推断,至少有两个关键的过程控制着洪水期间的水化学变化。一个是雨水的稀释作用,另一个是水-岩-气的相互作用。然而,对于裂隙水来说,后者的作用可能更重要,即在洪水期间,高浓度的土壤CO2溶解于水中,则更具侵蚀性的水能溶解更多的石灰岩,从而增强水的电导率。而对于管道水,雨水的稀释作用更重要,因为研究区较高的pH和低电导率的雨水能更快地通过管道流出,所以,要了解岩溶系统水化学的变化,仅考虑水-岩相互作用是不够的,我们还必须重视CO2气体对岩溶系统中水化学变化的影响。总之,水-岩-气相互作  相似文献   
637.
The plasma plumes of Europa and Callisto   总被引:1,自引:0,他引:1  
We investigate the proposition that Europa and Callisto emit plasma plumes, i.e., a contiguous body of ionospheric plasma, extended in the direction of the corotation flow, analogous to the plume of smoke emitted in the downwind direction from a smokestack. Such plumes were seen by Voyager 1 to be emitted by Titan. We find support for this proposition in published data from Galileo Plasma Science and Plasma Wave observations taken in the corotation wakes of both moons and from magnetometer measurements reported from near the orbit of, but away from, Europa itself. This lends credence to the hypothesis that the plumes escaping from the ionospheres of Europa and Callisto are wrapped around Jupiter by corotation, survive against dispersion for a fairly long time and are convected radially by magnetospheric motions. We present simple models of plume acceleration and compare the plumes of the Europa and Callisto to the known plumes of Titan.  相似文献   
638.
639.
Rapidly-flowing sectors of an ice sheet (ice streams) can play an important role in abrupt climate change through the delivery of icebergs and meltwater and the subsequent disruption of ocean thermohaline circulation (e.g., the North Atlantic's Heinrich events). Recently, several cores have been raised from the Arctic Ocean which document the existence of massive ice export events during the Late Pleistocene and whose provenance has been linked to source regions in the Canadian Arctic Archipelago. In this paper, satellite imagery is used to map glacial geomorphology in the vicinity of Victoria Island, Banks Island and Prince of Wales Island (Canadian Arctic) in order to reconstruct ice flow patterns in the highly complex glacial landscape. A total of 88 discrete flow-sets are mapped and of these, 13 exhibit the characteristic geomorphology of palaeo-ice streams (i.e., parallel patterns of large, highly elongated mega-scale glacial lineations forming a convergent flow pattern with abrupt lateral margins). Previous studies by other workers and cross-cutting relationships indicate that the majority of these ice streams are relatively young and operated during or immediately prior to deglaciation. Our new mapping, however, documents a large (> 700 km long; 110 km wide) and relatively old ice stream imprint centred in M'Clintock Channel and converging into Viscount Melville Sound. A trough mouth fan located on the continental shelf suggests that it extended along M'Clure Strait and was grounded at the shelf edge. The location of the M'Clure Strait Ice Stream exactly matches the source area of 4 (possibly 5) major ice export events recorded in core PS1230 raised from Fram Strait, the major ice exit for the Arctic Ocean. These ice export events occur at 12.9, 15.6, 22 and 29.8 ka (14C yr BP) and we argue that they record vigorous episodes of activity of the M'Clure Strait Ice Stream. The timing of these events is remarkably similar to the North Atlantic's Heinrich events and we take this as evidence that the M'Clure Strait Ice Stream was also activated around the same time. This may hold important implications for the cause of the North Atlantic's Heinrich events and hints at the possibility of a pan-ice sheet response.  相似文献   
640.
Intra‐plate volcanism in western Europe shows statistically significant episodicity during the Quaternary period. By comparing the known ages for eruptions in France and Germany, which are compiled here, with a composite oxygen isotope record, we have investigated the link between this episodic volcanism and the climate record over the last two million years. We show that increased volcanism between 415–400 ka and 17–5 ka correlates with warming phases at the end of the last Weichselian (Devensian) and earlier Elsterian (Anglian) glacial stages. The three significant caldera explosions in the eastern Eifel, Germany, are all associated with warming phases at the onset of interglacials. The growth and decay of nearby ice sheets suggest that surface changes in continental mass distribution during glacial Milankovich cycles could provide a mechanism for this correlation by means of the distal effects of flexural loading on the lithosphere. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号