首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1425篇
  免费   90篇
  国内免费   18篇
测绘学   64篇
大气科学   119篇
地球物理   357篇
地质学   422篇
海洋学   106篇
天文学   315篇
综合类   3篇
自然地理   147篇
  2022年   1篇
  2021年   32篇
  2020年   32篇
  2019年   38篇
  2018年   55篇
  2017年   36篇
  2016年   51篇
  2015年   51篇
  2014年   55篇
  2013年   86篇
  2012年   72篇
  2011年   71篇
  2010年   60篇
  2009年   94篇
  2008年   73篇
  2007年   74篇
  2006年   80篇
  2005年   73篇
  2004年   77篇
  2003年   60篇
  2002年   54篇
  2001年   46篇
  2000年   32篇
  1999年   38篇
  1998年   35篇
  1997年   13篇
  1996年   13篇
  1995年   13篇
  1994年   13篇
  1993年   8篇
  1992年   5篇
  1991年   10篇
  1990年   2篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   5篇
  1984年   6篇
  1983年   8篇
  1982年   3篇
  1981年   9篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   1篇
  1948年   1篇
排序方式: 共有1533条查询结果,搜索用时 171 毫秒
901.
The San Juan Basin natural gas field, located in northwestern New Mexico and southwestern Colorado in the USA, is a case-type coalbed methane system. Groundwater is thought to play a key role in both biogenic methane generation and the CO2 sequestration potential of coalbed systems. We show here how noble gases can be used to construct a physical model that describes the interaction between the groundwater system and the produced gas. We collected 28 gas samples from producing wells in the artesian overpressured high production region of the basin together with 8 gas samples from the underpressured low production zone as a control. Stable isotope and major species determination clearly characterize the gas in the high production region as dominantly biogenic in origin, and the underpressured low producing region as having a significant admix of thermogenic coal gas. 3He/4He ratios increase from 0.0836Ra at the basin margin to 0.318Ra towards the center, indicating a clear but small mantle He signature in all gases. Coherent fractionation of water-derived 20Ne/36Ar and crustal 4He/40Ar* are explained by a simple Rayleigh fractionation model of open system groundwater degassing. Low 20Ne concentrations compared to the model predicted values are accounted for by dilution of the groundwater-associated gas by desorbed coalbed methane. This Rayleigh fractionation and dilution model together with the gas production history allows us to quantify the amount of water involved in gas production at each well. The quantified water volumes in both underpressured and overpressured zones range from 1.7 × 103 m3 to 4.2 × 105 m3, with no clear distinction between over- and underpressured production zones. These results conclusively show that the volume of groundwater seen by coal does not play a role in determining the volume of methane produced by secondary biodegradation of these coalbeds. There is no requirement of continuous groundwater flow for renewing the microbes or nutrient components. We furthermore observe strong mass related isotopic fractionation of 20Ne/22Ne and 38Ar/36Ar isotopic ratios. This can be explained by a noble gas concentration gradient in the groundwater during gas production, which causes diffusive partial re-equilibration of the noble gas isotopes. It is important for the study of other systems in which extensive groundwater degassing may have occurred to recognize that severe isotopic fractionation of air-derived noble gases can occur when such concentration gradients are established during gas production. Excess air-derived Xe and Kr in our samples are shown to be related to the diluting coalbed methane and can only be accounted for if Xe and Kr are preferentially and volumetrically trapped within the coal matrix and released during biodegradation to form CH4.  相似文献   
902.
Melt inclusions in clinopyroxenes from lherzolitic xenoliths from the deep lithospheric mantle beneath the Slave Craton (Lac de Gras area, Canada) reveal multiple origins for carbonatitic melts. One type of inclusions consists of a series of silicate–carbonate–silicate concentric layers, interpreted to have unmixed under disequilibrium conditions during rapid ascent to the surface. Bulk major- and trace-element compositions are typical of Group 1 kimberlites and quantitative nuclear microprobe imaging of the globules reveals fractionation of related elements (e.g. F–Br, Nb–Ta) between the silicate and carbonate components. The globules probably formed by partial melting of carbonated peridotite, consistent with results of melting experiments and some models for the generation of kimberlite magmas. They provide evidence for a genetic relationship between some carbonate-rich magmas and ultramafic silicate magmas, and for the possibility of unmixing processes of these melts during their evolution.

The second inclusion type comprises carbonate-rich globules interpreted as samples of Mg-carbonatite melt that quenched on ascent to the surface. Bulk major- and trace-element compositions indicate that the melts were derived from a carbonate-rich source and oxygen, carbon, and strontium isotope data are consistent with the involvement of recycled crustal material and suggest that some mantle-derived carbonatites are unrelated to kimberlites.  相似文献   

903.
Ocean Drilling Program (ODP) leg 193 successfully drilled four deep holes (126 to 386 m) into basement underlying the active dacite-hosted Pacmanus hydrothermal field in the eastern Manus Basin. Anhydrite is abundant in the drill core material, filling veins and vesicles, cementing breccias, and occasionally replacing igneous material. We report rare-earth element (REE) contents of anhydrite from a site of diffuse venting (Site 1188) which show extreme variability, in terms of both absolute concentrations (e.g., 0.08–28.3 ppm Nd) and pattern shape (LaN/SmN=0.08–3.78, SmN/YbN=0.48–23.1, Eu/Eu*=0.59–6.1). The range of REE patterns in anhydrite includes enrichments in the middle and heavy REEs and variable Eu anomalies. The patterns differ markedly from those of anhydrite recovered during ODP Leg 158 from the TAG hydrothermal system at the Mid-Atlantic Ridge which display uniform LREE-enriched patterns with positive Eu anomalies, very similar to TAG vent fluid patterns. As the system is active, the host-rock composition is uniform, and the anhydrite veins appear to relate to the same hydrothermal stage, we can rule out predominant host-rock and transport control. Instead, we propose that the variation in REE content reflects waxing and waning input of magmatic volatiles (HF, SO2) and variable complexation of REEs in the fluids. REE speciation calculations suggest that increased fluoride and possibly sulfate concentrations at Pacmanus may affect REE complexation in fluids, whereas at TAG only chloride and hydroxide complexes play a significant role. The majority of the anhydrites do not show positive Eu anomalies, suggesting that the fluids were more oxidizing than in typical mid-ocean ridge hydrothermal systems. We use other hydrothermal fluids from the Manus Basin (Vienna Woods and Desmos), which bracket the Pacmanus fluids in terms of acidity and ligand concentrations, to examine the dependence of REE complexation on fluid composition. Geochemical modeling reveals that under the prevailing conditions at Pacmanus (pH~3.5, T=250–300 °C), Eu oxidation state and the relative importance of fluoride versus chloride complexing are very sensitive to small variations in oxygen fugacity, temperature, and pH. Patterns with extreme mid-REE enrichment may reflect speciation effects (free-ion abundance) coupled with crystal chemical control. We conclude that the great variability in REE concentrations and pattern shape is likely due to variable fluid composition and REE complexation in the fluids. Editorial handling: L. Meinert  相似文献   
904.
Interactions between catchment variables and sediment transport processes in rivers are complex, and sediment transport behaviour during high‐flow events is not well documented. This paper presents an investigation into sediment transport processes in a short‐duration, high‐discharge event in the Burdekin River, a large sand‐ and gravel‐bed river in the monsoon‐ and cyclone‐influenced, semi‐arid tropics of north Queensland. The Burdekin's discharge is highly variable and strongly seasonal, with a recorded maximum of 40 400 m3 s?1. Sediment was sampled systematically across an 800 m wide, 12 m deep and straight reach using Helley‐Smith bedload and US P‐61 suspended sediment samplers over 16 days of a 29‐day discharge event in February and March 2000 (peak 11 155 m3 s?1). About 3·7 × 106 tonnes of suspended sediment and 3 × 105 tonnes of bedload are estimated to have been transported past the sample site during the flow event. The sediment load was predominantly supply limited. Wash load included clay, silt and very fine sand. The concentration of suspended bed material (including very coarse sand) varied with bedload transport rate, discharge and height above the bed. Bedload transport rate and changes in channel shape were greatest several days after peak discharge. Comparison between these data and sparse published data from other events on this river shows that the control on sediment load varies between supply limited and hydraulically limited transport, and that antecedent weather is an important control on suspended sediment concentration. Neither the empirical relationships widely used to estimate suspended sediment concentrations and bedload (e.g. Ackers & White, 1973) nor observations of sediment transport characteristics in ephemeral streams (e.g. Reid & Frostick, 1987) are directly applicable to this river.  相似文献   
905.
Island arc picrites are restricted to a few localities including the Lesser Antilles, Japan, Vanuatu and the Solomon Islands. The picrite occurrences appear to be linked to the subduction of young, hot oceanic crust and anomalous geotherms. At the Solomon arc, the Australian plate is presently subducted beneath the Pacific plate. A particular feature of the Solomon arc is the subduction of a spreading center (Woodlark Ridge). In the Solomon Islands, picrites only occur in the New Georgia archipelago, located above or close to the subducting Woodlark Ridge. These picrites contain between 12 and 30 wt% MgO, the associated primitive basalts show MgO contents from 11.5 to 13.6 wt%. Linear trends defined by Cr, Ni and other trace elements vs. MgO indicate that the picritic bulk compositions originate from mixing between a basaltic-picritic melt and a Mg- and Cr-rich endmember, rather than from fractional crystallization of extremely Mg-rich magmas. Major and trace element modeling identify mantle wedge peridotite as the most likely mixing endmember. Trace element abundances in the Solomon arc picrites indicate a mantle source enrichment by subduction components and a large depletion of Nb and Ta that is typical for island arc volcanic rocks. Most incompatible trace element patterns of the New Georgia picrites and basalts are parallel, supporting a cogenetic evolution of these rocks by mixing processes. 87Sr/86Sr and Nd values in the basalts and picrites range from 0.7033 to 0.7043 and +5.8 to +8.0, respectively. These values partially overlap with compositions of the Indian MORB field. Alternatively, subducted sediment and fluids from altered MORB may have displaced the Sr isotope composition to more radiogenic 87Sr/86Sr. Hf values range from +12.2 to +14.6 and show in combination with Nd that the picrites were most likely generated within the Indian mantle domain.This revised version was published online September 2004 with a correction to Table 2.  相似文献   
906.
利用多参数自动记录仪对桂林岩溶试验场的降水量、水位、水温、pH值和电导率进行了监测,数据采集间隔根据参数变化的程度由2min到1h不等。结果发现,岩溶裂隙水在洪水期间pH值呈降低趋势,而电导率呈升高的不寻常变化。与此相反,对于岩溶管道水,同样是在洪水期间,它的pH值是升高的,而电导率呈正常的降低。考虑到Ca2 和HCO-3分别为地下水中主要的阴阳离子(>90%),及它们与电导率的线性关系,计算得到了洪水期间方解石的饱和指数(SIc)和水的CO2分压(Pco2)的变化情况。发现洪水时裂隙水的Pco2高于正常情况的Pco2,而它的SIc值比正常情况低。与此相对,对于管道水,尽管同一洪水期间其SIc降低,但Pco2也降低。从这些结果,可以推断,至少有两个关键的过程控制着洪水期间的水化学变化。一个是雨水的稀释作用,另一个是水-岩-气的相互作用。然而,对于裂隙水来说,后者的作用可能更重要,即在洪水期间,高浓度的土壤CO2溶解于水中,则更具侵蚀性的水能溶解更多的石灰岩,从而增强水的电导率。而对于管道水,雨水的稀释作用更重要,因为研究区较高的pH和低电导率的雨水能更快地通过管道流出,所以,要了解岩溶系统水化学的变化,仅考虑水-岩相互作用是不够的,我们还必须重视CO2气体对岩溶系统中水化学变化的影响。总之,水-岩-气相互作  相似文献   
907.
Respiration tests were carried out during a seven month bioremediation field trial to monitor biodegradation rates of weathered diesel non-aqueous phase liquid (NAPL) contaminating a shallow sand aquifer. Multiple depth monitoring of oxygen concentrations and air-filled porosity were carried out in nutrient amended and nonamended locations to assess the variability of degradation rate estimates calculated from respiration tests.
The field trial consisted of periodic addition of nutrients (nitrogen and phosphorus) and aeration of a 100 m2 trial plot. During the bioremediation trial, aeration was stopped periodically, and decreases in gaseous oxygen concentrations were logged semi-continuously using data loggers attached to recently developed in situ oxygen probes placed at multiple depths above and within a thin NAPL-contaminated zone. Oxygen usage rate coefficients were determined by fitting zero-and first-order rate equations to the oxygen concentration reduction curves, although only zero-order rates were used to calculate biodegradation rates. Air-filled porosity estimates were found to vary by up to a factor of two between sites and at different times.
NAPL degradation rates calculated from measured air-filled porosity and oxygen usage rate coefficients ranged up to 69 mg kg-1 day-1. These rates are comparable to and higher than rates quoted in other studies, despite the high concentrations and weathered state of the NAPL at this test site. For nutrient-amended sites within the trial plot, estimates of NAPL degradation rates were two to three times higher than estimates from nonamended sites. Rates also increased with depth.  相似文献   
908.
We report δ44/40Ca(SRM 915a) values for eight fused MPI‐DING glasses and the respective original powders, six USGS igneous rock reference materials, the U‐Th disequilibria reference material TML, IAEA‐CO1 (Carrara marble) and several igneous rocks (komatiites and carbonatites). Sample selection was guided by three considerations: (1) to address the need for information values on reference materials that are widely available in support of interlaboratory comparison studies; (2) support the development of in situ laser ablation and ion microprobe techniques, which require isotopically homogenous reference samples for ablation; and (3) provide Ca isotope values on a wider range of igneous and metamorphic rock types than is currently available in the scientific literature. Calcium isotope ratios were measured by thermal ionisation mass spectrometry in two laboratories (IFM‐GEOMAR and Saskatchewan Isotope Laboratory) using 43Ca/48Ca‐ and 42Ca/43Ca‐double spike techniques and reported relative to the calcium carbonate reference material NIST SRM 915a. The measurement uncertainty in both laboratories was better than 0.2‰ at the 95% confidence level. The impact of different preparation methods on the δ44/40Ca(SRM 915a) values was found to be negligible. Except for ML3‐B, the original powders and the respective MPI‐DING glasses showed identical δ44/40Ca(SRM 915a) values; therefore, possible variations in the Ca isotope compositions resulting from the fusion process are excluded. Individual analyses of different glass fragments indicated that the glasses are well homogenised on the mm scale with respect to Ca. The range of δ44/40Ca(SRM 915a) values in the igneous rocks studied was larger than previously observed, mostly owing to the inclusion of ultramafic rocks from ophiolite sections. In particular, the dunite DTS‐1 (1.49 ± 0.06‰) and the peridotite PCC‐1 (1.14 ± 0.07‰) are enriched in 44Ca relative to volcanic rocks (0.8 ± 0.1‰). The Carrara marble (1.32 ± 0.06‰) was also found to be enriched in 44Ca relative to the values of assumed precursor carbonates (< 0.8‰). These findings suggest that the isotopes of Ca are susceptible to fractionation at high temperatures by, as yet, unidentified igneous and metamorphic processes.  相似文献   
909.
The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号