首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1449篇
  免费   66篇
  国内免费   18篇
测绘学   64篇
大气科学   119篇
地球物理   357篇
地质学   422篇
海洋学   106篇
天文学   315篇
综合类   3篇
自然地理   147篇
  2022年   1篇
  2021年   32篇
  2020年   32篇
  2019年   38篇
  2018年   55篇
  2017年   36篇
  2016年   51篇
  2015年   51篇
  2014年   55篇
  2013年   86篇
  2012年   72篇
  2011年   71篇
  2010年   60篇
  2009年   94篇
  2008年   73篇
  2007年   74篇
  2006年   80篇
  2005年   73篇
  2004年   77篇
  2003年   60篇
  2002年   54篇
  2001年   46篇
  2000年   32篇
  1999年   38篇
  1998年   35篇
  1997年   13篇
  1996年   13篇
  1995年   13篇
  1994年   13篇
  1993年   8篇
  1992年   5篇
  1991年   10篇
  1990年   2篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   5篇
  1984年   6篇
  1983年   8篇
  1982年   3篇
  1981年   9篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1976年   2篇
  1975年   5篇
  1974年   2篇
  1973年   1篇
  1948年   1篇
排序方式: 共有1533条查询结果,搜索用时 15 毫秒
821.
Estuarine fronts are well known to influence transport of waterborne constituents such as phytoplankton and sediment, yet due to their ephemeral nature, capturing the physical driving mechanisms and their influence on stratification and mixing is difficult. We investigate a repetitive estuarine frontal feature in the Snohomish River Estuary that results from complex bathymetric shoal/channel interactions. In particular, we highlight a trapping mechanism by which mid-density water trapped over intertidal mudflats converges with dense water in the main channel forming a sharp front. The frontal density interface is maintained via convergent transverse circulation driven by the competition of lateral baroclinic and centrifugal forcing. The frontal presence and propagation give rise to spatial and temporal variations in stratification and vertical mixing. Importantly, this front leads to enhanced stratification and suppressed vertical mixing at the end of the large flood tide, in contrast to what is found in many estuarine systems. The observed mechanism fits within the broader context of frontogenesis mechanisms in which varying bathymetry drives lateral convergence and baroclinic forcing. We expect similar trapping-generated fronts may occur in a wide variety of estuaries with shoal/channel morphology and/or braided channels and will similarly influence stratification, mixing, and transport.  相似文献   
822.
Cobalt, like Mg, may cause the precipitation of aragonite rather than calcite in aqueous solutions due to the adsorption and crystal poisoning of calcite by a hydrated ion. Solutions containing NaCl and CaCl2, having the ionic strength and Ca content of seawater (35‰ salinity), were spiked with known amounts of CoCl2. Calcium carbonate was precipitated by the addition of 0.7 ml of 1 M Na2CO3. All experimental runs were made at 25°C, and all products were examined by X-ray diffraction. At low concentrations of Co (< 5·?4M) calcite and vaterite formed. At concentrations from 5·10?4 M to 2·10?3M, the products consisted of combinations of calcite and vaterite; aragonite and calcite; aragonite and vaterite; calcite, vaterite and aragonite. In solutions of 3·10?3M CoCl2, most precipitates were aragonite with only one sample containing a small amount of calcite. All precipitates from 5·10?3M CoCl2 solutions either contained aragonite or were amorphous. Solutions with concentrations of 1 · 10?2M CoCl2 produced only amorphous precipitates. All precipitates contained an amorphous violet phase, assumed to be basic cobaltous carbonate (2CoCO3·Co(OH)2·H2O).  相似文献   
823.
New optically stimulated luminescence dating and Bayesian models integrating all legacy and BRITICE-CHRONO geochronology facilitated exploration of the controls on the deglaciation of two former sectors of the British–Irish Ice Sheet, the Donegal Bay (DBIS) and Malin Sea ice-streams (MSIS). Shelf-edge glaciation occurred ~27 ka, before the global Last Glacial Maximum, and shelf-wide retreat began 26–26.5 ka at a rate of ~18.7–20.7 m a–1. MSIS grounding zone wedges and DBIS recessional moraines show episodic retreat punctuated by prolonged still-stands. By ~23–22 ka the outer shelf (~25 000 km2) was free of grounded ice. After this time, MSIS retreat was faster (~20 m a–1 vs. ~2–6 m a–1 of DBIS). Separation of Irish and Scottish ice sources occurred ~20–19.5 ka, leaving an autonomous Donegal ice dome. Inner Malin shelf deglaciation followed the submarine troughs reaching the Hebridean coast ~19 ka. DBIS retreat formed the extensive complex of moraines in outer Donegal Bay at 20.5–19 ka. DBIS retreated on land by ~17–16 ka. Isolated ice caps in Scotland and Ireland persisted until ~14.5 ka. Early retreat of this marine-terminating margin is best explained by local ice loading increasing water depths and promoting calving ice losses rather than by changes in global temperatures. Topographical controls governed the differences between the ice-stream retreat from mid-shelf to the coast.  相似文献   
824.
Sub-micrometer inclusions in diamonds carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The trace element patterns of diamond fluids vary within a limited range and are similar to those of carbonatitic/kimberlitic melts that originate from beneath the lithospheric mantle. A convecting mantle origin for the fluid is also implied by C isotopic compositions and by a preliminary Sr isotopic study (Akagi, T., Masuda, A., 1988. Isotopic and elemental evidence for a relationship between kimberlite and Zaire cubic diamonds. Nature 336, 665–667.). Nevertheless, the major element chemistry of HDFs is very different from that of kimberlites and carbonatites, varying widely and being characterized by extreme K enrichment (up to ~ 39 wt.% on a water and carbonate free basis) and high volatile contents. The broad spectrum of major element compositions in diamond-forming fluids has been related to fluid–rock interaction and to immiscibility processes.Elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Here we present the results of the first multi radiogenic-isotope (Sr, Nd, Pb) and trace element study on fluid-rich diamonds, implemented using a newly developed off-line laser sampling technique. The data are combined with N and C isotope analysis of the diamond matrix to better understand the possible sources of fluid involved in the formation of these diamonds. Sr isotope ratios vary significantly within single diamonds. The highly varied but unsupported Sr isotope ratios cannot be explained by immiscibility processes or fluid-mineral elemental fractionations occurring at the time of diamond growth. Our results demonstrate the clear involvement of a mixed fluid, with one component originating from ancient incompatible element-enriched parts of the lithospheric mantle while the trigger for releasing this fluid source was probably carbonatitic/kimberlitic melts derived from greater depths. We suggest that phlogopite mica was an integral part of the enriched lithospheric fluid source and that breakdown of this mica releases K and radiogenic Sr into a fluid phase. The resulting fluids operate as a major metasomatic agent in the sub-continental lithospheric mantle as reflected by the isotopic composition and trace element patterns of G10 garnets.  相似文献   
825.
We develop numerical solutions of a theoretical model which has been proposed to explain the formation of subglacial bedforms. The model has been shown to have the capability of producing bedforms in two dimensions, when they may be interpreted as ribbed moraine. However, these investigations have left unanswered the question of whether the theory is capable of producing fully three‐dimensional bedforms such as drumlins. We show that, while the three‐dimensional calculations show realistic quasi‐three‐dimensional features such as dislocations in the ribbing pattern, they do not produce genuine three‐dimensional drumlins. We suggest that this inadequacy is due to the treatment of subglacial drainage in the theory as a passive variable, and thus that the three‐dimensional forms may be associated with conditions of sufficient subglacial water flux. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
826.
On June 29, 2009, version 1 of the ASTER GDEM (Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model) was made available at no cost or restrictions to users worldwide via electronic download. The ASTER GDEM provides expanded spatial coverage and better resolution than other global digital elevation models (DEMs). In this paper we demonstrate how the ASTER GDEM provides new opportunities for investigating large aeolian sand dunes in three‐dimensions. Two dune‐specific spatial analysis methods are presented to illustrate potential applications of these data for discriminating dune generations and quantifying spatial variations of sediment supply. Moreover, we review how existing and emerging fields of dune pattern analysis and simulation modeling will be able to make significant advances through application of these data, potentially leading to future progress in studies of dune morphodynamics, environmental controls, and paleoenvironmental reconstructions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
827.
828.
The higher mid‐latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter‐catchment comparison program, North‐Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North‐Watch program, which focuses on how these catchments collect, store and release water and identify ‘types’ of hydro‐climatic catchment response. At most sites, a 10‐year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter‐annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual‐scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall–runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
829.
Unlike other lakes in the McMurdo Dry Valleys, Antarctica, Lake Vida has a thick (~ 19 m) ice cover sealing a liquid brine body of unusually high salinity (~ 245 g/L) from the atmosphere. To constrain the conditions under which the atypical Lake Vida ice cover formed and evolved, 19 ice samples were collected down to a depth of ~ 14 m, together with three brine samples trapped in the ice at ~ 16 m for analysis of helium, neon, argon, krypton, and xenon concentrations. The broad pattern of noble gas concentrations for Lake Vida samples is fundamentally different from that of air saturated water (ASW) at 0 °C and an elevation of 340 m for salinities of 0 (ice) and 245 g/L (brine). Overall, ice samples are enriched in He and depleted in Ne with saturation relative to ASW averages of 1.38 and 0.82, respectively, and strongly depleted in Ar, Kr, and Xe with relative saturations of 0.10, 0.06, and 0.05, respectively. By contrast, brine samples are generally depleted in He and Ne (relative saturation averages of 0.33 and 0.27, respectively) but enriched in Ar, Kr, and Xe, with relative saturation averages of 1.45, 3.15, and 8.86, respectively. A three-phase freezing partitioning model generating brine, ice and bubble concentrations for all stable noble gases was tested and compared with our data. Measured brine values are best reproduced for a salinity value of 175 g/L, a pressure of 1.1 atm, and a bubble volume of 20 cm3 kg?1. Sensitivity tests for ice + bubble samples show an ideal fit for bubble volumes of ~ 1–2 cm3 kg?1. Our results show that the conditions under which ice and brine formed and evolved at Lake Vida are significantly different from other ice-covered lakes in the area. Our brine data suggest that Lake Vida may be transitioning from a wet to a dry-based lake, while the ice + bubble data suggest at least partial re-equilibration of residual liquid with the atmosphere as ice forms at the top of Lake Vida ice cover.  相似文献   
830.
The central region of S?o Miguel Island is one of the most seismically active areas of the Azores archipelago. A revised analysis of the seismicity distribution at this region has, for the first time, shown that the seismicity is clustered in two distinct areas: the area around Fogo Volcano (Fogo) and the area around Congro maar (Congro), with each area having a highly localized swarm activity. From a total of about 15,000 events in the period from 2002 to 2010, 78 best located events were selected to make fault plane solutions using P-wave polarities and amplitude ratios. This set of fault plane solutions, and another six subsets derived from it, were inverted for the best fitting stress tensor. The stress tensor using all the 78 fault plane solutions is characterized by a subhorizontal ??1 striking WNW-ESE and a ??3 striking NNE-SSW, consistent with the regional stress field for this region. A similar result, using only the fault plane solutions located in the Fogo area, was obtained. On the other hand, for the Congro area, a local stress field seems to be superimposed on the regional field: subhorizontal ??3, striking NNE-SSW, and a near-vertical ??1. The same stress regime persists in the first 5?km depth, probably related to the upwelling of thermal fluids. The rising fluids generate horizontal extension at shallow depths, which favour the opening of cracks and the circulation and ascension of hydrothermal fluids. The stress regime deeper than 5?km is more uncertain; however, it is indicative of a compressional regime. Thus, it can be conclude that the smaller Fogo area appears to be dominated by the normal regional stress field while the high active Congro area seems to have a different, highly heterogeneous stress field dominated by local conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号