首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   815篇
  免费   131篇
  国内免费   203篇
测绘学   31篇
大气科学   177篇
地球物理   184篇
地质学   364篇
海洋学   103篇
天文学   82篇
综合类   112篇
自然地理   96篇
  2024年   2篇
  2023年   19篇
  2022年   55篇
  2021年   39篇
  2020年   26篇
  2019年   39篇
  2018年   51篇
  2017年   59篇
  2016年   49篇
  2015年   25篇
  2014年   41篇
  2013年   44篇
  2012年   45篇
  2011年   56篇
  2010年   47篇
  2009年   52篇
  2008年   37篇
  2007年   47篇
  2006年   26篇
  2005年   27篇
  2004年   24篇
  2003年   25篇
  2002年   33篇
  2001年   20篇
  2000年   21篇
  1999年   34篇
  1998年   32篇
  1997年   25篇
  1996年   19篇
  1995年   7篇
  1994年   21篇
  1993年   21篇
  1992年   13篇
  1991年   14篇
  1990年   10篇
  1989年   5篇
  1988年   5篇
  1987年   9篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有1149条查询结果,搜索用时 31 毫秒
91.
92.
To improve the accuracy of short-term(0–12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System(HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting(WRF-ARW)model and the Advanced Regional Prediction System(ARPS) three-dimensional variational data assimilation(3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station(AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting(QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6–9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score(FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.  相似文献   
93.
94.
Coastal wetlands are located in the ecotone of interaction between the land surface and sea, and anthropogenic activities extensively interfere with these wetlands through the reclamation of large tidal wetlands and destruction of the function of the ecosystems. In this study, we investigated the dynamic evolutionary characteristics of the Bohai Rim coastal area over the past 40 years using the Modified Normalized Difference Water Index, the fractal dimension, object-oriented classification, the land-use transfer trajectory, and regression analysis. Additionally, we quantified and monitored the evolution of reclamation and analyzed the correlation between reclamation and coastal wetlands based on 99 Landsat-2, -5, and -8 images (at 60 m and 30 m spatial resolution) over the period 1980–2019. The results are as follows. (1) The coastline of the Bohai Rim increased by 1 631.2 km from 1980 to 2019 with a zigzag variation. The artificial coastline increased by 2 946.1 km, whereas the natural coastline decreased by 90%. (2) The area of man-made wetlands increased by 3 736.9 km2, the area of construction land increased by 1 008.4 km2, and the natural wetland area decreased by 66%. The decrease of tidal flats is the main contributor to the decrease of natural wetland area (takes account for 91.1%). Coastal areas are affected by intense human disturbance, which was taken place across a large area of tidal flats and caused the landscape to fragment and be more heterogeneous. The coastal zone development activities were primarily concentrated in the southern Laizhou Bay, the Yellow River Delta, the Bohai Bay, the northern Liaodong Bay, and the Pulandian Bay. The solidified shorelines and increase in sea level have resulted in intertidal wetlands decreasing and impaired wetland ecology. (3) There is a good agreement between reclamation and the size of the coastal wetlands. Both land reclamation and the reduction in coastal wetland areas are significantly related to the population size, fishery output value, and urbanization rate. In summary, human activities, such as the construction of aquaculture ponds and salt pans, industrialization, and urbanization, are the primary forces that influence the environmental changes in the coastal region. This study is beneficial for establishing and improving the systems for the rational development and utilization of natural resources, and provides theoretical references for restoring wetland ecology and managing future reclamation activities in other coastal zone-related areas.  相似文献   
95.
Assessments of phytoplankton diversity in Sabah waters, North Borneo, have primarily relied on morphology-based identification, which has inherent biases and can be time-consuming. Next-Generation Sequencing (NGS) technology has been shown to be capable of overcoming several limitations of morphology-based methods. Samples were collected from the Sepanggar Bay over the course of the year 2018 in different monsoon seasons. Morphology-based identification and NGS sequencing of the V8–V9 region of the 18S LSU rDNA were used to investigate the diversity of the phytoplankton community. Microscopy and NGS showed complementary results with more diatom taxa detected by microscopy whereas NGS detected smaller and rarer taxa. The harmful algal genera in the study site comprised of Skeletonema, Margalefidinium, Pyrodinium, Takayama, and Alexandrium as detected by NGS. This study showed that that an integrative approach of both morphological and molecular techniques could provide more comprehensive information about the phytoplankton community as the approach captured quantitative variability as well as the diversity of phytoplankton species.  相似文献   
96.
97.
Various data are used to investigate the characteristics of the surface wind field and rainfall on the East China Sea Kuroshio (ESK) in March and April, 2011. In March, the wind speed maximum shows over the ESK front (ESKF) in the 10 meter wind field, which agrees with the thermal wind effect. A wind curl center is generated on the warm flank of the ESKF. The winds are much weaker in April, so is the wind curl. A rainband exists over the ESKF in both the months. The Weather Research and Forecasting (WRF) model is used for further researches. The winds on the top of the marine atmosphere boundary layer (MABL) indicate that in March, a positive wind curl is generated in the whole MABL over the warm flank of the ESKF. The thermal wind effect forced by the strong SST gradient overlying the background wind leads to strong surface northeasterly winds on the ESKF, and a positive shearing vorticity is created over the warm flank of the ESKF to generate wind curl. In the smoothed sea surface temperature experiment, the presence of the ESKF is responsible for the strong northeast winds in the ESKF, and essential for the distribution of the rainfall centers in March, which confirms the mechanism above. The same simulation is made for April, 2011, and the responses from the MABL become weak. The low background wind speed weakens the effect of the thermal wind, thus no strong Ekman pumping is helpful for precipitation. There is no big difference in rainfall between the control run and the smooth SST run. Decomposition of the wind vector shows that local wind acceleration induced by the thermal wind effect along with the variations in wind direction is responsible for the pronounced wind curl/divergence over the ESKF.  相似文献   
98.
Seven microsatellite markers were used to evaluate the genetic diversity and differentiation of seven stocks of Litopenaeus vannamei, which were introduced from Central and South America to China. All seven microsatellite loci were polymorphic, with polymorphism information content(PIC) values ranging from 0.593 to 0.952. Totally 92 alleles were identified, and the number of alleles(Na) and effective alleles(Ne) varied between 4 and 21 and 2.7 and 14.6, respectively. Observed heterozygosity(Ho) values were lower than the expected heterozygosity(He) values(0.526–0.754), which indicated that the seven stocks possessed a rich genetic diversity. Thirty-seven tests were detected for reasonable significant deviation from Hardy-Weinberg equilibrium. Fis values were positive at five loci, suggesting that there was a relatively high degree of inbreeding within stocks. Pairwise Fst values ranged from 0.0225 to 0.151, and most of the stock pairs were moderately differentiated. Genetic distance and cluster analysis using UPGMA revealed a close genetic relationship of L. vannamei between Pop2 and Pop3. AMOVA indicated that the genetic variation among stocks(11.3%) was much lower than that within stocks(88.7%). Although the seven stocks had a certain degree of genetic differentiation and a rich genetic diversity, there is an increasing risk of decreased performance due to inbreeding in subsequent generations.  相似文献   
99.
Based on the stratigraphic sequence formed since the last glaciation and revealed by 3000 km long high-resolution shallow seismic profiles and the core QDZ03 acquired recently off the southern Shandong Peninsula, we addressed the sedimentary characteristics of a Holocene subaqueous clinoform in this paper. Integrated analyses were made on the core QDZ03, including sedimentary facies, sediment grain sizes, clay minerals, geochemistry, micro paleontology, and AMS 14 C dating. The result indicates that there exists a Holocene subaqueous clinoform, whose bottom boundary generally lies at 15–40 m below the present sea level with its depth contours roughly parallel to the coast and getting deeper seawards. The maximum thickness of the clinoform is up to 22.5 m on the coast side, and the thickness contours generally spread in a banded way along the coastline and becomes thinner towards the sea. At the mouths of some bays along the coast, the clinoform stretches in the shape of a fan and its thickness is evidently larger than that of the surrounding sediments. This clinoform came into being in the early Holocene(about 11.2 cal kyr BP) and can be divided into the lower and upper depositional units(DU 2 and DU 1, respectively). The unit DU 2, being usually less than 3 m in thickness and formed under a low sedimentation rate, is located between the bottom boundary and the Holocene maximum flooding surface(MFS), and represents the sediment of a post-glacial transgressive systems tract; whereas the unit DU 1, the main body of the clinoform, sits on the MFS, belonging to the sediment of a highstand systems tract from middle Holocene(about 7–6 cal kyr BP) to the present. The provenance of the clinoform differs from that of the typical sediments of the Yellow River and can be considered as the results of the joint contribution from both the Yellow River and the proximal coastal sediments of the Shandong Peninsula, as evidenced by the sediment geochemistry of the core. As is controlled mainly by coactions of multiple factors such as the Holocene sea-level changes, sediment supplies and coastal dynamic conditions, the development of the clinoform is genetically related with the synchronous clinoform or subaqueous deltas around the northeastern Shandong Peninsula and in the northern South Yellow Sea in the spatial distribution and sediment provenance, as previously reported, with all of them being formed from the initial stage of the Holocene up to the present.  相似文献   
100.
Li  Luqi  Derudder  Ben  Shen  Wei  Kong  Xiang 《Journal of Geographical Systems》2022,24(1):115-140
Journal of Geographical Systems - There has been a proliferation of studies trying to explain the driving forces behind the formation and evolution of intercity corporate networks. Previous...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号