首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1049篇
  免费   52篇
  国内免费   6篇
测绘学   19篇
大气科学   62篇
地球物理   237篇
地质学   372篇
海洋学   89篇
天文学   219篇
综合类   2篇
自然地理   107篇
  2022年   3篇
  2021年   5篇
  2020年   18篇
  2019年   17篇
  2018年   24篇
  2017年   34篇
  2016年   40篇
  2015年   36篇
  2014年   32篇
  2013年   61篇
  2012年   41篇
  2011年   55篇
  2010年   53篇
  2009年   69篇
  2008年   49篇
  2007年   54篇
  2006年   44篇
  2005年   49篇
  2004年   48篇
  2003年   36篇
  2002年   32篇
  2001年   31篇
  2000年   29篇
  1999年   13篇
  1998年   24篇
  1997年   18篇
  1996年   5篇
  1995年   15篇
  1994年   20篇
  1993年   15篇
  1992年   9篇
  1991年   11篇
  1990年   10篇
  1989年   16篇
  1988年   5篇
  1987年   12篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1981年   7篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1976年   3篇
  1975年   5篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
排序方式: 共有1107条查询结果,搜索用时 15 毫秒
61.
Improved regional and interregional stratigraphic correlations of Pennsylvanian strata permit comparisons of vegetational changes in Euramerican coal swamps. The coal-swamp vegetation is known directly from in situ coal-ball peat deposits from more than 65 coals in the United States and Europe. Interpretations of coal-swamp floras on the basis of coal-ball peat studies are extended to broader regional and stratigraphic patterns by use of coal palynology. Objectives of the quantitative analyses of the vegetation in relation to coal are to determine the botanical constituents at the peat stage and their environmental implications for plant growth and peat accumulation. Morphological and paleoecological analyses provide a basis for deducing freshwater regimes of coal swamps.Changes in composition of Pennsylvanian coal-swamp vegetation are quire similar from one paralic coal region to another and show synchrony that is attributable to climate. Paleobotany and paleogeography of the Euramerican province indicate a moist tropical paleoclimate. Rainfall, runoff and evapotranspiration were the variable climatic controls in the distribution of coal-swamp vegetation, peat accumulation and coal resources. In relative terms of climatic wetness the Pennsylvanian Period is divisible into five intervals, which include two relatively drier intervals that developed during the Lower-Middle and Middle-Upper Pennsylvanian transitions. The climate during Early Pennsylvanian time was moderately wet and the median in moisture availability. Early Middle Pennsylvanian was drier, probably seasonally dry-wet; late Middle Pennsylvanian was the wettest in the Midcontinent; early Late Pennsylvanian was the driest; and late Late Pennsylvanian was probably the wettest in the Dunkard Basin. The five climatic intervals represent a general means of dividing coal resources within each region into groups with similar botanical constituents and environments of peat accumulation. Regional differences in basinal geology and climate were significant variables, but the synchronous control of paleoclimate was of primary importance.  相似文献   
62.
A detailed isotopic study of the Manaslu leucogranite was carried out. A U-Pb age of 25 Ma and a whole rock Rb-Sr age isochron of 18 Ma were obtained, suggesting that the magmatic activity lasted at least 7 Ma. Initial Sr isotopic ratios are very high (0.740 to 0.760) and initial Nd isotopic ratios are low ( Nd in : –13 to –16), and they show the existence of large isotopic variations even at the metre scale. These are not the result of perturbations by fluids but rather they reflect the initial isotopic heterogeneity of the source material which has not been obliterated by magmatic processes (e.g. fusion, mixing by convection). These results also support the crustal origin of this leucogranite. The Tibetan slab paragneisses, whose Sr and Nd isotopic ratios are very similar to those of the granite at an age of 20 Ma, are the most probable parental material. Nd model ages for both the leucogranite and the gneisses are in the range 1.5–2 Ga. A model of formation of the Manaslu granite by coalescence of different batches of magma is in agreement with the present data.  相似文献   
63.
Most of the discrepancies in the climate sensitivity of general circulation models (GCMs) are believed to be due to differences in cloud radiative feedback. Analysis of cloud response to climate change in different ‘regimes’ may offer a more detailed understanding of how the cloud response differs between GCMs. In which case, evaluation of simulated cloud regimes against observations in terms of both their cloud properties and frequency of occurrence will assist in assessing confidence in the cloud response to climate change in a particular GCM. In this study, we use a clustering technique on International Satellite Cloud Climatology Project (ISCCP) data and on ISCCP-like diagnostics from two versions of the Hadley Centre GCM to identify cloud regimes over four different geographical regions. The two versions of the model are evaluated against observational data and their cloud response to climate change compared within the cloud regime framework. It is found that cloud clusters produced by the more recent GCM, HadSM4, compare more favourably with observations than HadSM3. In response to climate change, although the net cloud response over particular regions is often different in the two models, in several instances the same basic processes may be seen to be operating. Overall, both changes in the frequency of occurrence of cloud regimes and changes in the properties (optical depth and cloud top height) of the cloud regimes contribute to the cloud response to climate change.  相似文献   
64.
This study of fossils (pollen, plant macrofossils, stomata and fish) and sediments (lithostratigraphy and geochemistry) from the Wendel site in North Dakota, USA, emphasizes the importance of considering ground-water hydrology when deciphering paleoclimate signals from lakes in postglacial landscapes. The Wendel site was a paleolake from about 11,500 14C yr BP to 11,100 14C yr BP. Afterwards, the lake-level lowered until it became a prairie marsh by 9,300 14C yr BP and finally, at 8,500 14C yr BP, an ephemeral wetland as it is today. Meanwhile, the vegetation changed from a white spruce parkland (11,500 to 10,500 14C yr BP) to deciduous parkland, followed by grassland at 9,300 14C yr BP. The pattern and timing of these aquatic and terrestrial changes are similar to coeval kettle lake records from adjacent uplands, providing a regional aridity signal. However, two local sources of ground water were identified from the fossil and geochemical data, which mediated atmospheric inputs to the Wendel basin. First, the paleolake received water from the melting of stagnant ice buried under local till for about 900 years after glacier recession. Later, Holocene droughts probably caused the lower-elevation Wendel site to capture the ground water of up-gradient lakes.  相似文献   
65.
A stability model of drainage basin mass balance is used to interpret historic and prehistoric patterns of sediment production, storage and output from the Waipaoa River basin, New Zealand and assess the sensitivity of basin sediment yield to land use change in the historic period. Climate and vegetation cover changed during the late Holocene, but the drainage basin mass balance system was stable before the basin was deforested by European colonists in the late 19th and early 20th centuries. In this meso‐scale dispersal system sediment sources and sinks are closely linked, and before that time there was also little variability in the rate of terrigenous mass accumulation on the adjacent continental shelf. However, despite strong first‐order geologic controls on erosion and extensive alluvial storage, sediment delivery to the continental shelf is sensitive and highly responsive to historic hillslope destabilization driven by land use change. Alluvial buffering can mask the effects of variations in sediment production within a basin on sediment yield at the outlet, but this is most likely to occur in basins where alluvial storage is large relative to yield and where the residence time of alluvial sediment is long relative to the time scale of environmental change. At present, neither situation applies to the Waipaoa River basin. Thus, the strength of the contemporary depositional signal may not only be due to the intensity of the erosion processes involved, but also to the fact that land use change in the historic period destabilized the drainage basin mass balance system.  相似文献   
66.
67.
68.
69.
—?We test how well low-magnitude (m bLg 1.8 to 2.6), 25-ton chemical explosions at Balapan, Kazakhstan, can be located using IMS stations and standard earth models, relying on precisely determined relative arrival times of nearly similar, regional and teleseismic waveforms. Three 1997 Balapan explosions were recorded by a number of currently reporting and surrogate IMS stations. Three regional stations and two teleseismic arrays yielded consistent waveforms appropriate for relative picking. Master-event locations based on the AK135 model and ground-truth information from the first, shallowest and best-recorded explosion, fell under 1 km from known locations, for depths constrained to that of the master event. The resulting 90% confidence ellipses covered 12–13?km2 and contained the true locations; however, results for depth constrained to true depth were slightly less satisf actory. From predictions based on ground truth, we found a P g -coda phase at Makanchi, Kazakhstan to be misidentified and poorly modeled. After accounting for this, 90% ellipses shrank to 2–3?km2 and true-depth mislocation vectors became more consistent with confidence-ellipse orientations. These results suggest that a high level of precision could be provided by a tripartite array of calibration shots in cases where models are poorly known. We hope that the successful relocation of these small Balapan shots will support the role of calibration explosions in verification monitoring and special event studies, including on-site inspection.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号