首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   583篇
  免费   32篇
  国内免费   6篇
测绘学   13篇
大气科学   36篇
地球物理   125篇
地质学   227篇
海洋学   61篇
天文学   95篇
综合类   1篇
自然地理   63篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   14篇
  2019年   14篇
  2018年   13篇
  2017年   19篇
  2016年   25篇
  2015年   26篇
  2014年   19篇
  2013年   24篇
  2012年   28篇
  2011年   39篇
  2010年   44篇
  2009年   39篇
  2008年   27篇
  2007年   34篇
  2006年   25篇
  2005年   27篇
  2004年   30篇
  2003年   22篇
  2002年   13篇
  2001年   10篇
  2000年   14篇
  1999年   6篇
  1998年   16篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   6篇
  1993年   8篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1885年   1篇
  1877年   1篇
排序方式: 共有621条查询结果,搜索用时 15 毫秒
531.
There is considerable interest in accurately estimating water quality parameters in turbid (Case 2) and eutrophic waters such as the Western Basin of Lake Erie (WBLE). Lake Erie is a large, open freshwater body that supports diverse ecosystem, and over 12 million people in the mid-western part of the United States depend on it for drinking water, fisheries, navigational, and recreational purposes. The increasing utilization of the freshwater has deteriorated the water severely and currently the lake is experiencing recurring harmful algal blooms (HABs). Improving the water quality of Lake Erie requires the use of robust monitoring tools that help water quality managers understand sources and pathways of influxes that trigger HABs. Satellite-based remote sensing sensor such as the moderate resolution imaging spectroradiometer (MODIS) may provide frequent and synoptic view of the water quality indices. In this study, data set from field measurements was used to evaluate the performance of 14 existing ocean color algorithms. Results indicated that MODIS data consistently underestimated the chlorophyll a concentrations in the WBLE, with the largest source of errors from dissolved organic matter and xanthophyll accessory pigments in this data set. Most of the global algorithms, including OC4v4 and the Baltic model, generated near-identical statistical parameters with an average R2 of ~0.57 and RMSE ~2.9 μg/l. MODIS performed poorly (R2 ~0.18) when its NIR/red bands were used. A slightly improved model was developed using similar band ratio approach generating R2 of ~0.62 and RMSE ~1.8 μg/l.  相似文献   
532.
533.
Communication of hydrologic data to the public can be improved by connecting data to the places they represent. In our example of data communication, we coupled hydrologic data with simultaneously collected video as both a scientific and public engagement tool. This note presents a method for collecting spatially and temporally dense datasets of water-quality and geophysical data on small streams and lakes, and for displaying the data in a user-friendly format using commercially available software. With this method, multiple instruments are mounted on a canoe and a controlled survey float is carried out to collect data. The data stream is georeferenced and logged using an Arduino microcontroller to provide detailed information about spatial variability. We employed these continuous data-collection methods at small streams and lakes across Wisconsin, USA. Comparison of stream-float sensor data to lab reported data, data collected by alternative sensors, and previously collected data in our study areas indicates that the low-cost temperature, electrical conductivity, pH, and dissolved oxygen sensors performed well. GoPro cameras recorded video throughout the duration of data collection. Our established water-quality and geophysical data collection methods are inexpensive, fast, and reliable, which qualify them as excellent tools for fine-scale spatial understanding of stream and lake habitats' health. Data-rich video connects point measurements of water properties to the appearance of the native environment. This method helps improve our understanding of groundwater and surface water interactions in complex hydrogeologic systems, enhance communication amongst stakeholders, and provide context when monitoring and managing sensitive habitats.  相似文献   
534.
535.
The relationship between climate change and biodiversity was a central issue at the 10th Conference of the Parties (COP 10) to the Convention on Biological Diversity (CBD). In this paper we draw from participant observation data collected at COP 10, and related policy documentation, to examine how concerns about climate change are shaping the conservation policy landscape – in terms of the knowledge and rationales used as inputs, networks of actors involved, objectives sought, and actions proposed. We find that debates at the intersection of climate and biodiversity were overwhelmingly framed in relation to, or through the lens of carbon. Through a discussion of four core Climate-Motivated Responses, we illustrate how “carbon-logic”, and the initiatives that it generates, simultaneously creates threats to the objectives sought by some actors, and opportunities for the objectives sought by others. We situate our observations in the context of some of the historical dilemmas that have faced conservation, and discuss this current moment in the dynamic trajectory of conservation governance: a moment when decisions about conserving biodiversity are becoming entangled with carbon-logic and the market. In this case, while some actors seek opportunities for biodiversity ends by riding the coattails of the climate agenda, the threats of doing so may undermine the biological and social objectives of the CBD convention itself.  相似文献   
536.
Monthly observations accumulated over more than a decade at the DYFAMED time-series station allow us to estimate the temporal evolution of anthropogenic CO2 in the western Mediterranean Sea. This objective is reached by using recognized interpolation procedures to reconstruct the incomplete distributions of measured total dissolved inorganic carbon and total alkalinity. These reconstructed fields, associated with those available for dissolved oxygen and temperature, are used to estimate the distribution of anthropogenic CO2. This is done with the recently developed Tracer combining Oxygen, inorganic Carbon, and total alkalinity (TrOCA) approach. The main results indicate that (1) the concentrations of anthropogenic CO2 are much higher than those found in the Atlantic Ocean (the minimum concentration at the DYFAMED site is 50 μmol kg−1), and (2) the temporal trend for anthropogenic CO2 is decreasing, especially in the intermediate and the deep layers of the water column at the DYFAMED site. This decrease in anthropogenic CO2 is significantly correlated with a decrease in the dissolved oxygen and with an increase in both salinity and temperature. These trends are discussed in the light of recent published works that propose explanations for the observed increases in salinity and temperature that occurred in the western basin since the 1950s. We conclude that the decrease in anthropogenic CO2 probably resulted from an invasion of old water masses. Different hypotheses on the origin of these water masses are considered and several arguments indicate that the eastern Mediterranean transient (EMT) could have played an important role in the observed decrease in anthropogenic CO2 concentrations at the DYFAMED site.  相似文献   
537.
We deployed semipermeable membrane devices (SPMDs) on beaches for 28 days at 53 sites in Prince William Sound (PWS), Alaska, to evaluate the induction potential from suspected sources of cytochrome P450 1A (CYP1A)-inducing contaminants. Sites were selected to assess known point sources, or were chosen randomly to evaluate the region-wide sources. After deployment, SPMD extracts were analyzed chemically for persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAH). These results were compared with hepatic CYP1A enzyme activity of juvenile rainbow trout injected with the same extracts prior to clean-up for the chemical analyses. Increased CYP1A activity was strongly associated with PAH concentrations in extracts, especially chrysene homologues but was not associated with POPs. The only apparent sources of chrysene homologues were lingering oil from Exxon Valdez, asphalt and bunker fuels released from storage tanks during the 1964 Alaska earthquake, creosote leaching from numerous pilings at one site, and PAH-contaminated sediments at Cordova Harbor. Our results indicate that PWS is remarkably free of pollution from PAH when nearby sources are absent as well as from pesticides and PCBs generally.  相似文献   
538.
For future solar missions as well as ground-based telescopes, efficient ways to return and process data have become increasingly important. Solar Orbiter, which is the next ESA/NASA mission to explore the Sun and the heliosphere, is a deep-space mission, which implies a limited telemetry rate that makes efficient onboard data compression a necessity to achieve the mission science goals. Missions like the Solar Dynamics Observatory (SDO) and future ground-based telescopes such as the Daniel K. Inouye Solar Telescope, on the other hand, face the challenge of making petabyte-sized solar data archives accessible to the solar community. New image compression standards address these challenges by implementing efficient and flexible compression algorithms that can be tailored to user requirements. We analyse solar images from the Atmospheric Imaging Assembly (AIA) instrument onboard SDO to study the effect of lossy JPEG2000 (from the Joint Photographic Experts Group 2000) image compression at different bitrates. To assess the quality of compressed images, we use the mean structural similarity (MSSIM) index as well as the widely used peak signal-to-noise ratio (PSNR) as metrics and compare the two in the context of solar EUV images. In addition, we perform tests to validate the scientific use of the lossily compressed images by analysing examples of an on-disc and off-limb coronal-loop oscillation time-series observed by AIA/SDO.  相似文献   
539.
Selecting a seismic time‐to‐depth conversion method can be a subjective choice that is made by geophysicists, and is particularly difficult if the accuracy of these methods is unknown. This study presents an automated statistical approach for assessing seismic time‐to‐depth conversion accuracy by integrating the cross‐validation method with four commonly used seismic time‐to‐depth conversion methods. To showcase this automated approach, we use a regional dataset from the Cooper and Eromanga basins, Australia, consisting of 13 three‐dimensional (3D) seismic surveys, 73 two‐way‐time surface grids and 729 wells. Approximately 10,000 error values (predicted depth vs. measured well depth) and associated variables were calculated. The average velocity method was the most accurate overall (7.6 m mean error); however, the most accurate method and the expected error changed by several metres depending on the combination and value of the most significant variables. Cluster analysis tested the significance of the associated variables to find that the seismic survey location (potentially related to local geology (i.e. sedimentology, structural geology, cementation, pore pressure, etc.), processing workflow, or seismic vintage), formation (potentially associated with reduced signal‐to‐noise with increasing depth or the changes in lithology), distance to the nearest well control, and the spatial location of the predicted well relative to the existing well data envelope had the largest impact on accuracy. Importantly, the effect of these significant variables on accuracy were found to be more important than choosing between the four methods, highlighting the importance of better understanding seismic time‐to‐depth conversions, which can be achieved by applying this automated cross‐validation method.  相似文献   
540.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号