首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   601篇
  免费   26篇
  国内免费   7篇
测绘学   13篇
大气科学   38篇
地球物理   129篇
地质学   238篇
海洋学   61篇
天文学   88篇
综合类   3篇
自然地理   64篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   17篇
  2019年   14篇
  2018年   14篇
  2017年   19篇
  2016年   26篇
  2015年   26篇
  2014年   20篇
  2013年   26篇
  2012年   28篇
  2011年   41篇
  2010年   48篇
  2009年   41篇
  2008年   26篇
  2007年   33篇
  2006年   26篇
  2005年   28篇
  2004年   29篇
  2003年   20篇
  2002年   14篇
  2001年   8篇
  2000年   14篇
  1999年   8篇
  1998年   16篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   8篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
排序方式: 共有634条查询结果,搜索用时 15 毫秒
71.
The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units 1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2–3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5–6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22–43% basalt, ~0.4–1% basaltic andesite, ~29–54% andesite, ~2–3% dacite, and ~18–40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely formed by episodic partial melting of upper crustal rocks in response to emplacement of basalts. There are no examples of mingled rhyolitic and basaltic magmas. Whatever mechanism is invoked to explain the generation of andesite at the Tequila volcanic field, it must be consistent with a dominantly bimodal distribution of high-Ti basalt and rhyolite for an 800 kyr interval beginning ~1 Ma, which abruptly switched to punctuated bursts of predominantly andesitic volcanism over the last 200 kyrs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial responsility: J. Donnelly-NolanThis revised version was published online in January 2005 with corrections to Tables 1 and 3.An erratum to this article can be found at  相似文献   
72.
73.
74.
The natural spectrum of electromagnetic variations surrounding Earth extends across an enormous frequency range and is controlled by diverse physical processes. Electromagnetic (EM) induction studies make use of external field variations with frequencies ranging from the solar cycle which has been used for geomagnetic depth sounding through the 10\(^{-4}\)–10\(^4\) Hz frequency band widely used for magnetotelluric and audio-magnetotelluric studies. Above 10\(^4\) Hz, the EM spectrum is dominated by man-made signals. This review emphasizes electromagnetic sources at \(\sim\)1 Hz and higher, describing major differences in physical origin and structure of short- and long-period signals. The essential role of Earth’s internal magnetic field in defining the magnetosphere through its interactions with the solar wind and interplanetary magnetic field is briefly outlined. At its lower boundary, the magnetosphere is engaged in two-way interactions with the underlying ionosphere and neutral atmosphere. Extremely low-frequency (3 Hz–3 kHz) electromagnetic signals are generated in the form of sferics, lightning, and whistlers which can extend to frequencies as high as the VLF range (3–30 kHz).The roughly spherical dielectric cavity bounded by the ground and the ionosphere produces the Schumann resonance at around 8 Hz and its harmonics. A transverse resonance also occurs at 1.7–2.0 kHz arising from reflection off the variable height lower boundary of the ionosphere and exhibiting line splitting due to three-dimensional structure. Ground and satellite observations are discussed in the light of their contributions to understanding the global electric circuit and for EM induction studies.  相似文献   
75.
76.
77.
This research addresses the challenges of the lack of non‐invasive methods and poor spatiotemporal resolution associated with monitoring biogeochemical activity central to bioremediation of subsurface contaminants. Remediation efforts often include growth of biofilm to contain or degrade chemical contaminants, such as nitrates, hydrocarbons, heavy metals, and some chlorinated solvents. Previous research indicates that nuclear magnetic resonance (NMR) is sensitive to the biogeochemical processes of biofilm accumulation. The current research focuses on developing methods to use low‐cost NMR technology to support in situ monitoring of biofilm growth and geochemical remediation processes in the subsurface. Biofilm was grown in a lab‐scale radial flow bioreactor designed to model the near wellbore subsurface environment. The Vista Clara Javelin NMR logging device, a slim down‐the‐borehole probe, collected NMR measurements over the course of eight days while biofilm was cultivated in the sand‐packed reactor. Measured NMR mean log T2 relaxation times decreased from approximately 710 to 389 ms, indicating that the pore environment and bulk fluid properties were changing due to biofilm growth. Destructive sampling employing drop plate microbial population analysis and scanning electron and stereoscopic microscopy confirmed biofilm formation. Our findings demonstrate that the NMR logging tool can detect small to moderate changes in T2 distribution associated with environmentally relevant quantities of biofilm in quartz sand.  相似文献   
78.
79.
Aliphatic (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in dissolved and particulate material from surface microlayer (SML) and subsurface water (SSW) sampled at nearshore observation stations, sewage effluents and harbour sites from Marseilles coastal area (Northwestern Mediterranean) in 2009 and 2010. Dissolved and particulate AH concentrations ranged 0.05–0.41 and 0.04–4.3 μg l−1 in the SSW, peaking up to 38 and 1366 μg l−1 in the SML, respectively. Dissolved and particulate PAHs ranged 1.9–98 and 1.9–21 ng l−1 in the SSW, amounting up 217 and 1597 ng l−1 in the SML, respectively. In harbours, hydrocarbons were concentrated in the SML, with enrichment factors reaching 1138 for particulate AHs. Besides episodic dominance of biogenic and pyrogenic inputs, a moderate anthropisation from petrogenic sources dominated suggesting the impact of shipping traffic and surface runoffs on this urbanised area. Rainfalls increased hydrocarbon concentrations by a factor 1.9–11.5 in the dissolved phase.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号