首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   12篇
  国内免费   1篇
测绘学   27篇
大气科学   27篇
地球物理   95篇
地质学   131篇
海洋学   53篇
天文学   70篇
自然地理   60篇
  2022年   4篇
  2021年   6篇
  2020年   8篇
  2019年   5篇
  2018年   10篇
  2017年   6篇
  2016年   10篇
  2015年   8篇
  2014年   14篇
  2013年   32篇
  2012年   13篇
  2011年   12篇
  2010年   16篇
  2009年   17篇
  2008年   12篇
  2007年   16篇
  2006年   19篇
  2005年   18篇
  2004年   15篇
  2003年   16篇
  2002年   14篇
  2001年   13篇
  2000年   8篇
  1999年   11篇
  1998年   17篇
  1997年   6篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   10篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   5篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1979年   7篇
  1978年   9篇
  1977年   4篇
  1976年   8篇
  1975年   8篇
  1974年   3篇
  1973年   3篇
  1967年   3篇
  1940年   2篇
排序方式: 共有463条查询结果,搜索用时 203 毫秒
201.
In this paper we investigate the effects of sphericity on the radiation reflected from a planet with a homogeneous, conservative scattering atmosphere of optical thicknesses of 0.25 and 1.0. We considered a Henyey-Greenstein phase function with asymmetry factors of 0.5 and 0.7. Significant differences were found when these results were compared with the plane-parallel calculations. Also, large violations of the reciprocity theorem, which is only true for plane-parallel calculations, were noted. Results are presented for the radiance versus height distributions as a function of planetary phase angle. These results will be useful to researchers in the field of remote sensing and planetary spectroscopy.  相似文献   
202.
203.
Depositional history of the Helgoland mud area,German Bight,North Sea   总被引:1,自引:0,他引:1  
The Helgoland mud area in the German Bight is one of the very few sediment depocenters in the North Sea. Despite the shallowness of the setting (<30 m water depth), its topmost sediments provide a continuous and high-resolution record allowing the reconstruction of regional paleoenvironmental conditions for the time since ~400 a.d. The record reveals a marked shift in sedimentation around 1250 a.d., when average sedimentation rates drop from >13 to ~1.6 mm/year. Among a number of major environmental changes in this region during the Middle Ages, the disintegration of the island of Helgoland appears to be the most likely factor which caused the very high sedimentation rates prior to 1250 a.d. According to historical maps, Helgoland used to be substantially bigger at around 800 a.d. than today. After the shift in sedimentation, a continuous and highly resolved paleoenvironmental record reflects natural events, such as regional storm-flood activity, as well as human impacts at work at local to global scales, on sedimentation in the Helgoland mud area.  相似文献   
204.
205.
Water repellency in oil contaminated sandy and clayey soils   总被引:3,自引:3,他引:0  
Two sites from a humid tropical environment were studied with respect to soil water repellency caused by hydrocarbon contamination. Samples were analyzed for water repellency (molarity ethanol droplet method), total petroleum hydrocarbons, acute toxicity (Microtox) and field capacity. At both sites, water absorption times were logarithmically related to the molarity ethanol drop value (R > 0.95). In a sandy soil collected from an old separation battery which had been bioremediated, field capacity was strongly related to hydrocarbon concentration (R = 0.998); and at 10,000 mg/kg the calculated field capacity was only 75 % of the baseline. Water repellency was related to hydrocarbon concentration asymptotically and plant growth limiting values (severity > 3.0) were observed at low concentrations (2,400 mg/kg), even though toxicity was at, or below background levels. Bioremediated soil at this site had hydrocarbon concentrations only 1,300 ppm above background, but had extreme water repellency (severity = 4.6–4.7). Soil water repellency was also measured in a clayey, organic rich floodable soil, in a multiple pipeline right-of-way colonized by water tolerant pasture and cattails. Water repellency was associated with total petroleum hydrocarbon concentration (R = 0.962), but was not related to field capacity or toxicity. In this low-lying site, the water repellency observed in the laboratory is probably not representative of field conditions: samples taken at the end of the ten week dry season (and only four days before the first rains) showed ample moisture (> 80 % field capacity).  相似文献   
206.
207.
208.
The first part of this paper discusses how planet formation proceeds in the disks orbiting M dwarf stars. These environments are different from those associated with solar‐type stars in several ways: The planet forming clock (set by orbits) runs slower, the disks are more prone to evaporation, the supply of raw material is lower, the snowline is closer in, and planetary systems are more easily disrupted. Because of these considerations, red dwarfs are less likely to harbor giant planets, but can readily produce smaller planets. The second part of this paper describes stellar evolution calculations for M dwarfs, which live far longer than the current age of the universe. These diminutive stellar objects remain convective over most of their lives, continue to burn hydrogen for trillions of years, and do not experience red giant phases in their old age. Instead, red dwarfs turn into blue dwarfs and finally white dwarfs. This work also shows (in part) why larger stars become red giants. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
209.
Larval transport from distant populations is essential for maintenance and renewal of populations in patchy and disturbed ecosystems such as deep-sea hydrothermal vents. We use quasi-geostrophic modeling to consider the potential for long-distance dispersal of hydrothermal vent larvae in mesoscale eddies interacting with the northern East Pacific Rise. Modeled eddy dynamics were similar to the observed propagation dynamics of Tehuantepec eddies, including their ability to cross the ridge. Simulated surface anticyclones were associated with coherent cyclones in the deep layer with relatively strong current velocities that could significantly increase the dispersal potential of passive particles. Eddy interactions with ridge topography further enhanced tracer dispersal along the ridge axis through shearing and elongation of the eddy core. Simulations suggest that the passage of an eddy would result in local loss from the vent field and aggregate transport with potential enhancement of dispersal between vent fields separated by up to 270 km. Based on the latitude at which most Tehuantepec eddies cross the ridge, eddy-induced flows would enhance connectivity between the 13°N, 11°N, and 9°N vent fields along the East Pacific Rise asymmetrically with higher transport from northern vent fields to southern vent fields.  相似文献   
210.
Using a 2D seismic dataset that covers part of the southern Orange Basin offshore South Africa, we reconstructed the geological evolution of the basin. This evolutionary model was then used to investigate the occurrence of natural gas within the sedimentary column and the distribution of gas leakage features in relation to the observed sedimentary and tectonic structures developed in the post-rift succession since the Early Cretaceous. The Cretaceous succession has been subdivided into five seismic units. The highest sedimentation rates occur within the Barremian/Aptian (unit C1) and the Turonian/Coniacian (unit C3). Two Cenozoic units (T1 and T2) have been distinguished. These show a sudden decrease in sedimentation rate for the whole of the Cenozoic. Three phases of gravitational tectonics, with two Late Cretaceous phases of mass movement in the northern study area and Cenozoic slumping in the southern study area, have been related to sedimentation rates, sea-level changes, paleoenvironmental evolution and regional tectonics. The occurrence of natural gas leakage follows a coast-parallel distribution within the study area. In the near shore part at water depths shallower than 400 m, massive gas chimneys penetrate through the sediment layers and reach the (near-) surface. Within an intermediate narrow band, between 300 and <500 m water depth, the gas migrates more diffusely through sub-vertical faulted Cretaceous sediments, while in the outer part of the basin, through the Cretaceous and Cenozoic gravitational wedges, only very few signs of gas accumulation and migration can be seen along the faults. A conceptual model has been established with the Aptian source rock generating gas in the outer part of the basin. This source rock underlies the Cenozoic wedge in the south and the thick Cretaceous wedge in the north and is a postulated source for the natural gas within the sedimentary column. This thermogenically generated gas does not migrate directly through the gravitational faults and the above lying sediments, but moves buoyancy driven up-dip along stratigraphic layers, to escape through the sediments to the sea-floor in the inner shelf area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号