全文获取类型
收费全文 | 236篇 |
免费 | 12篇 |
国内免费 | 1篇 |
专业分类
测绘学 | 2篇 |
大气科学 | 21篇 |
地球物理 | 50篇 |
地质学 | 91篇 |
海洋学 | 22篇 |
天文学 | 32篇 |
自然地理 | 31篇 |
出版年
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 5篇 |
2019年 | 7篇 |
2018年 | 8篇 |
2017年 | 6篇 |
2016年 | 8篇 |
2015年 | 4篇 |
2014年 | 7篇 |
2013年 | 17篇 |
2012年 | 10篇 |
2011年 | 12篇 |
2010年 | 8篇 |
2009年 | 11篇 |
2008年 | 17篇 |
2007年 | 7篇 |
2006年 | 10篇 |
2005年 | 4篇 |
2004年 | 8篇 |
2003年 | 13篇 |
2002年 | 6篇 |
2001年 | 4篇 |
2000年 | 3篇 |
1999年 | 4篇 |
1998年 | 3篇 |
1997年 | 5篇 |
1996年 | 1篇 |
1995年 | 5篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 4篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 6篇 |
1986年 | 3篇 |
1985年 | 6篇 |
1984年 | 4篇 |
1983年 | 5篇 |
1982年 | 4篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1974年 | 1篇 |
1972年 | 2篇 |
1971年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有249条查询结果,搜索用时 15 毫秒
111.
Carol P. Harden 《自然地理学》2020,41(4):289-290
112.
A model for the vertical cloud structure of Jupiter's Equitorial Plumes is deduced based on an analysis of Voyager images of the equitorial region in the 6190Å methane band and the 6000-Å continuum, and ground-based 8900-Å methane band images of Jupiter. A computer code that represents scattering and absorption from aerosol and gas layers was applied to a heirarchy of increasingly complex model aerosol structures to match the observations in the three wavelengths. The observations are consistent with a model for the vertical cloud structure of the equitorial region that consists of four aerosol layers. A high-altitude haze layer (HAL) with optical depth τ = 1 uniformly blankets the equitorial region at an altitude between 100 and 250 mbar. Below that, a middle-level cloud layer between 400 and 800 mbar contains the well-known Equatorial Plumes. The Plume clouds are optically thick (τ ≥ 12), bright clouds with single scattering albedo . They are probably composed of ammonia ice. The darker () interplume regions contain optically thinner clouds (2 ≤ τ ≤ 5) at the same altitude as the Plumes. An opaque cloud deck between 4000 and 6000 mbar, which is probably composed of water, forms the lowest model layer. In addition to these three layers, a thin forward scattering haze layer above 100 mbar was included in the models for consistency with previous work (Tomasko et al., 1978). We conclude that the vertical structure of the Equatorial Plume clouds is consistent with the hypothesis (Hunt et al., 1981) that the Plumes are caused by upwelling at the ammonia condensation level produced by bouyancy due to latent heat release from the condensation of water clouds nearly three scale heights below the Plumes. 相似文献
113.
Herbert J. Wiehl David A. Batchelor Carol Jo Crannell Brian R. Dennis Phillip N. Price Andreas Magun 《Solar physics》1985,96(2):339-356
The microwave and hard X-ray characteristics of 13 solar flares that produced microwave fluxes greater than 500 solar flux units have been analyzed. These Great Microwave Bursts were observed in the frequency range from 3 to 35 GHz at Bern, and simultaneous hard X-ray observations were made in the energy range from 30 to 500 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission spacecraft. The principal aim of this analysis is to determine whether or not the same distribution of energetic electrons can explain both emissions. The temporal and spectral behaviors of the microwaves as a function of frequency and the X-rays as a function of energy were tested for correlations, with results suggesting that optically thick microwave emission, at a frequency near the peak frequency, originates in the same electron population that produces the hard X-rays. The microwave emission at lower frequencies, however, is poorly correlated with emission at the frequency which appears to characterize this common source. A single-temperature and a multitemperature model were tested for consistency with the coincident X-ray and microwave spectra at microwave burst maximum. Four events are inconsistent with both of the models tested, and neither of the models attempts to explain the high-frequency part of the microwave spectrum. A source area derived on the basis of the single-temperature model agrees to within the uncertainties with the observed area of the one burst for which spatially resolved X-ray images are available.Swiss National Science Foundation Fellow from the University of Bern.Also Energy/Environmental Research Group, Incorporated, Tucson, Arizona, and Department of Physics and Astronomy, University of North Carolina, Chapel Hill. Present address: Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland. 相似文献
114.
Michael Rowan-Robinson Tom Babbedge Seb Oliver Markos Trichas Stefano Berta Carol Lonsdale Gene Smith David Shupe Jason Surace Stephane Arnouts Olivier Ilbert Olivier Le Févre Alejandro Afonso-Luis Ismael Perez-Fournon Evanthia Hatziminaoglou Mari Polletta Duncan Farrah Mattia Vaccari 《Monthly notices of the Royal Astronomical Society》2008,386(2):697-714
115.
Michael Schäfer Tanja Schäfer Matthew R. M. Izawa Edward A. Cloutis Stefan E. Schröder Thomas Roatsch Frank Preusker Katrin Stephan Klaus‐Dieter Matz Carol A. Raymond Christopher T. Russell 《Meteoritics & planetary science》2018,53(9):1925-1945
Ceres’ surface has commonly been linked with carbonaceous chondrites (CCs) by ground‐based telescopic observations, because of its low albedo, flat to red‐sloped spectra in the visible and near‐infrared (VIS/NIR) wavelength region, and the absence of distinct absorption bands, though no currently known meteorites provide complete spectral matches to Ceres. Spatially resolved data of the Dawn Framing Camera (FC) reveal a generally dark surface covered with bright spots exhibiting reflectance values several times higher than Ceres’ background. In this work, we investigated FC data from High Altitude Mapping Orbit (HAMO) and Ceres eXtended Juling (CXJ) orbit (~140 m/pixel) for global spectral variations. We found that the cerean surface mainly differs by spectral slope over the whole FC wavelength region (0.4–1.0 μm). Areas exhibiting slopes 10% μm?1 constitute only ~3% of the cerean surface and mainly occur in the bright material in and around young craters, whereas slopes ≥?10% μm?1 occur on more than 90% of the cerean surface; the latter being denoted as Ceres’ background material in this work. FC and Visible and Infrared Spectrometer (VIR) spectra of this background material were compared to the suite of CCs spectrally investigated so far regarding their VIS/NIR region and 2.7 μm absorption, as well as their reflectance at 0.653 μm. This resulted in a good match to heated CI Ivuna (heated to 200–300 °C) and a better match for CM1 meteorites, especially Moapa Valley. This possibly indicates that the alteration of CM2 to CM1 took place on Ceres. 相似文献
116.
Eleonora Ammannito M. Cristina De Sanctis Fabrizio Capaccioni M. Teresa Capria F. Carraro Jean‐Philippe Combe Sergio Fonte Alessandro Frigeri Steven P. Joy Andrea Longobardo Gianfranco Magni Simone Marchi Thomas B. McCord Lucy A. McFadden Harry Y. McSween Ernesto Palomba Carle M. Pieters Carol A. Polanskey Carol A. Raymond Jessica M. Sunshine Federico Tosi Francesca Zambon Christopher T. Russell 《Meteoritics & planetary science》2013,48(11):2185-2198
We present global lithological maps of the Vestan surface based on Dawn mission's Visible InfraRed (VIR) Spectrometer acquisitions with a spatial sampling of 200 m. The maps confirm the results obtained with the data set acquired by VIR with a spatial sampling of 700 m, that the reflectance spectra of Vesta's surface are dominated by pyroxene absorptions that can be interpreted within the context of the distribution of howardites, eucrites, and diogenites (HEDs). The maps also partially agree with the ground and Hubble Space Telescope observations: they confirm the background surface being an assemblage of howardite or polymict eucrite, as well as the location of a diogenitic‐rich spot; however, there is no evidence of extended olivine‐rich regions in the equatorial latitudes. Diogenite is revealed on the Rheasilvia basin floor, indicating that material of the lower crust/mantle was exposed. VIR also detected diogenites along the scarp of Matronalia Rupes, and the rims of Severina and a nearby, unnamed crater, and as ejecta of Antonia crater. The diogenite distribution is fully consistent with petrological constraints; although the mapped distribution does not provide unambiguous constraints, it favors the hypothesis of a magma ocean. 相似文献
117.
Alvinella pompejana is a polychaetous annelid that inhabits narrow tubes along the walls of high-temperature hydrothermal vent chimneys. The worm hosts a rich community of epibiotic bacteria that coats its dorsal surface. Although the worm tube microhabitat is a challenging environment to sample, characterizing the thermal and geochemical regime is important for understanding the ecology of the worm and its bacteria, as the worm spends most of its time inside the tube. We characterized the physicochemical conditions of diffuse hydrothermal flow inside inhabited worm tubes using in situ analysis and wet chemical analysis of discrete water samples. Thermistor probes deployed inside worm tubes measured temperatures ranging from 28.6°C to 84.0°C, while temperatures at tube orifices ranged from 7.5°C to 40.0°C. In situ electrochemical analysis of tube fluids revealed undetectable oxygen (<5 μM) and surprisingly low levels of free H2S (<0.2 μM), with most of the sulfide existing as aqueous FeS molecular clusters. Acid-volatile sulfide measured on discrete samples of tube fluids ranged from 62.9 to 359.3 μM, while free sulfide (H2S) ranged from undetectable (<0.2 μM) to 46.5 μM. The pH ranged from 5.33 to 6.40, and sulfate ranged from 22.5 mM to 27.5 mM. Nitrate ranged from 13.9 to 20.0 μM, whereas ammonium ranged from 2.5 to 9.7 μM. Total Fe ranged from 72.1 to 730.2 μM. Mn, Zn, Ni, V, P, and Cu were present in micromolar amounts; Pb, Cd, Co, and Ag were present in nanomolar levels. The worm tube fluids contained between 72% to 91% of Mg concentrations typically found in deep seawater. Plots of Mg concentrations vs. other fluid components showed that the tube fluid is geochemically altered from theoretical mixing values. Values of SO42− were enriched inside the worm tube fluids, whereas NO3−, Sr, Mn, Fe, Zn, and acid-volatile sulfide were depleted. The geochemistry of the tube microhabitat likely influences the structure of resident microbial communities. 相似文献
118.
119.
120.
The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and delta(15)N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in delta(15)N among sites, but with two exceptions had delta(15)N above 10 per thousand, reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals (delta(15)N= approximately 14-17 per thousand and 8-12 per thousand, respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries. 相似文献