首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   32篇
  国内免费   4篇
测绘学   11篇
大气科学   8篇
地球物理   132篇
地质学   45篇
海洋学   24篇
天文学   28篇
综合类   1篇
自然地理   37篇
  2024年   2篇
  2022年   1篇
  2021年   4篇
  2020年   10篇
  2019年   15篇
  2018年   9篇
  2017年   9篇
  2016年   19篇
  2015年   8篇
  2014年   11篇
  2013年   15篇
  2012年   7篇
  2011年   20篇
  2010年   14篇
  2009年   13篇
  2008年   9篇
  2007年   12篇
  2006年   10篇
  2005年   8篇
  2004年   8篇
  2003年   9篇
  2002年   6篇
  2001年   3篇
  2000年   7篇
  1999年   8篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   6篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有286条查询结果,搜索用时 828 毫秒
211.
212.
213.
214.
Deltas are important coastal sediment accumulation zones in both marine and lacustrine settings. However, currents derived from tides, waves or rivers can transfer that sediment into distal, deep environments, connecting terrestrial and deep marine depozones. The sediment transfer system of the Rhone River in Lake Geneva is composed of a sublacustrine delta, a deeply incised canyon and a distal lobe, which resembles, at a smaller scale, deep‐sea fan systems fed by high discharge rivers. From the comparison of two bathymetric datasets, collected in 1891 and 2014, a sediment budget was calculated for eastern Lake Geneva, based on which sediment distribution patterns were defined. During the past 125 years, sediment deposition occurred mostly in three high sedimentation rate areas: the proximal delta front, the canyon‐levée system and the distal lobe. Mean sedimentation rates in these areas vary from 0·0246 m year?1 (distal lobe) to 0·0737 m year?1 (delta front). Although the delta front–levées–distal lobe complex only comprises 17·0% of the analysed area, it stored 74·9% of the total deposited sediment. Results show that 52·5% of the total sediment stored in this complex was transported toward distal locations through the sublacustrine canyon. Namely, the canyon–levée complex stored 15·9% of the total sediment, while 36·6% was deposited in the distal lobe. The results thus show that in deltaic systems where density currents can occur regularly, a significant proportion of riverine sediment input may be transferred to the canyon‐lobe systems leading to important distal sediment accumulation zones.  相似文献   
215.
A new computer program, 1DTempPro, is presented for the analysis of vertical one‐dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2‐Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat‐transport equations. Pre‐ and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface‐water exchange and also hydraulic conductivity for cases where hydraulic head is known.  相似文献   
216.
At The Geysers geothermal reservoir in northern California, evidence strongly suggests that activities associated with production of electric power cause an increase in the number of small earthquakes. First-degree dynamic moment tensors are used to investigate the relationship between induced earthquakes and injection of water into a well as part of a controlled experiment in the northwest Geysers. The estimation of dynamic moment tensors in the complex shallow crust at The Geysers is challenging, so the method is described in detail with particular attention given to the uncertainty in the results. For seismic events in the moment magnitude range of 0.9–2.8, spectral moduli of dynamic moment tensors are reliably recovered in the frequency range of 1–100 Hz, but uncertainty in the associated spectral phases limits their use to a few simple results. A number of different static moment tensors are investigated, with the preferred one obtained from parameters of a model fitted to the spectral modulus of the dynamic moment tensor. Moment tensors estimated for a group of 20 earthquakes exhibit a range of source mechanisms, with over half having significant isotropic parts of either positive or negative sign. Corner frequencies of the isotropic part of the moment tensor are about 40 % larger than the average of the deviatoric moment tensor. Some spatial patterns are present in source mechanisms, with earthquakes closely related in space tending to have similar mechanisms, but at the same time, some nearby earthquakes have very different mechanisms. Tensional axes of displacement in the source regions are primarily horizontal, while the pressure axes range from near horizontal to vertical. Injection of water into the well in the center of the study area clearly causes an increase in the number of earthquakes per day, but an effect upon source mechanisms is not evident.  相似文献   
217.
218.
The infinite slope method is widely used as the geotechnical component of geomorphic and landscape evolution models. Its assumption that shallow landslides are infinitely long (in a downslope direction) is usually considered valid for natural landslides on the basis that they are generally long relative to their depth. However, this is rarely justified, because the critical length/depth (L/H) ratio below which edge effects become important is unknown. We establish this critical L/H ratio by benchmarking infinite slope stability predictions against finite element predictions for a set of synthetic two‐dimensional slopes, assuming that the difference between the predictions is due to error in the infinite slope method. We test the infinite slope method for six different L/H ratios to find the critical ratio at which its predictions fall within 5% of those from the finite element method. We repeat these tests for 5000 synthetic slopes with a range of failure plane depths, pore water pressures, friction angles, soil cohesions, soil unit weights and slope angles characteristic of natural slopes. We find that: (1) infinite slope stability predictions are consistently too conservative for small L/H ratios; (2) the predictions always converge to within 5% of the finite element benchmarks by a L/H ratio of 25 (i.e. the infinite slope assumption is reasonable for landslides 25 times longer than they are deep); but (3) they can converge at much lower ratios depending on slope properties, particularly for low cohesion soils. The implication for catchment scale stability models is that the infinite length assumption is reasonable if their grid resolution is coarse (e.g. >25 m). However, it may also be valid even at much finer grid resolutions (e.g. 1 m), because spatial organization in the predicted pore water pressure field reduces the probability of short landslides and minimizes the risk that predicted landslides will have L/H ratios less than 25. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
219.
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling‐based approaches are expensive and provide low‐density spatial and temporal information. Time‐lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation‐related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling‐based approaches for assessing emplacement and monitoring biostimulation‐based remediation. Field studies demonstrating the ability of time‐lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment‐related geochemical properties. Crosshole radar zero‐offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time‐lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost‐effective surface‐based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号