首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1531篇
  免费   31篇
  国内免费   7篇
测绘学   33篇
大气科学   114篇
地球物理   356篇
地质学   537篇
海洋学   141篇
天文学   236篇
综合类   6篇
自然地理   146篇
  2021年   10篇
  2020年   22篇
  2019年   12篇
  2018年   22篇
  2017年   16篇
  2016年   32篇
  2015年   25篇
  2014年   35篇
  2013年   71篇
  2012年   58篇
  2011年   66篇
  2010年   52篇
  2009年   71篇
  2008年   81篇
  2007年   68篇
  2006年   50篇
  2005年   51篇
  2004年   64篇
  2003年   53篇
  2002年   57篇
  2001年   36篇
  2000年   27篇
  1999年   26篇
  1998年   21篇
  1997年   20篇
  1996年   22篇
  1995年   28篇
  1994年   21篇
  1993年   24篇
  1992年   22篇
  1991年   24篇
  1990年   16篇
  1989年   17篇
  1988年   17篇
  1987年   23篇
  1986年   23篇
  1985年   24篇
  1984年   31篇
  1983年   33篇
  1982年   23篇
  1981年   22篇
  1980年   17篇
  1979年   15篇
  1978年   14篇
  1977年   18篇
  1976年   13篇
  1975年   13篇
  1974年   8篇
  1973年   13篇
  1970年   13篇
排序方式: 共有1569条查询结果,搜索用时 31 毫秒
991.
Sometimes the most beautiful things are the hardest to understand. Pillars like those of the Eagle Nebula form at the boundary between some of the hottest (10000~K) and coldest (10~K) gas in the Galaxy. Many physical processes come into play in the birth and growth of such gaseous pillars: hydrodynamic instability, photoionization, ablation, recombination, molecular heating and cooling, and probably magnetic fields. High-quality astronomical observations, quantitative numerical simulations, and scaled laser experiments provide a powerful combination for understanding their formation and evolution. We put our most recent hydrodynamic model to the test, by creating simulated observations from it and comparing them directly to the actual radioastronomical observations. Successfully reproducing major characteristics of the observations in this manner is an important step in designing appropriate laser experiments.  相似文献   
992.
The south polar region of the Moon contains areas permanently shadowed from solar illumination, which may provide cold traps for volatiles such as water ice. Previous radar studies have emphasized the search for diagnostic polarization signatures of thick ice in areas close to the pole, but near-surface regolith properties and regional geology are also important to upcoming orbital studies of the shadowed terrain. To study regional regolith variations, we collected 70-cm wavelength, 450-m resolution, dual-circular polarization radar data for latitudes 60-90° S using the Arecibo and Greenbank telescopes. The circular polarization ratio, μc, is sensitive to differences in rock abundance at the surface and up to tens of m below the surface, depending upon the regolith loss tangent. We observe significant variations in μc, attributed to changes in the surface and subsurface rock population, across the south polar highlands. Concentric haloes of low polarization ratio surrounding Hausen, Moretus, and other young craters represent rock-poor ejecta layers. Values of μc up to ∼1 occur in the floors and near-rim deposits of Eratosthenian and Copernican craters, consistent with abundant rocky ejecta and/or fractured impact melt. Enhanced μc values also correspond to areas mapped as Orientale-derived, plains-forming material [Wilhelms, D.E., Howard, K.A., Wilshire, H.G., 1979. USGS Map I-1162], and similar polarization properties characterize the permanently shadowed floors of craters Faustini and Shoemaker. Small areas of very high (>1.5) circular polarization ratio occur on shadowed and seasonally sunlit terrain, and appear to be associated with small craters. We suggest that regolith in low-lying areas near the south pole is characterized by a significant impact melt component from Orientale, which provides a source for excavation of the block-rich ejecta around small craters observed in this and earlier radar studies. The lower portion of the interior wall of Shackleton crater, permanently shadowed from the sun but visible from Earth, is not significantly different in 70-cm scattering properties from diurnally/seasonally sunlit areas of craters with similar morphology.  相似文献   
993.
994.
Analysis of radial, centripetal and gutter drainage in the volcanic region of northern Viti Levu, Fiji, enabled the delineation of several distinct volcanoes, despite the early Pliocene age and considerable later erosion. Three main shields with calderas and several smaller volcanoes are mapped. The results are consistent with some other geological and geophysical facts, but do not support the idea that these volcanoes were dominantly submarine eruptions. The method picks out known centres of gold mineralisation and may be applicable, in conjunction with other techniques, in mineral exploration.  相似文献   
995.
Two distributed parameter models, a one‐dimensional (1D) model and a two‐dimensional (2D) model, are developed to simulate overland flow in two small semiarid shrubland watersheds in the Jornada basin, southern New Mexico. The models are event‐based and represent each watershed by an array of 1‐m2 cells, in which the cell size is approximately equal to the average area of the shrubs. Each model uses only six parameters, for which values are obtained from field surveys and rainfall simulation experiments. In the 1D model, flow volumes through a fixed network are computed by a simple finite‐difference solution to the 1D kinematic wave equation. In the 2D model, flow directions and volumes are computed by a second‐order predictor–corrector finite‐difference solution to the 2D kinematic wave equation, in which flow routing is implicit and may vary in response to flow conditions. The models are compared in terms of the runoff hydrograph and the spatial distribution of runoff. The simulation results suggest that both the 1D and the 2D models have much to offer as tools for the large‐scale study of overland flow. Because it is based on a fixed flow network, the 1D model is better suited to the study of runoff due to individual rainfall events, whereas the 2D model may, with further development, be used to study both runoff and erosion during multiple rainfall events in which the dynamic nature of the terrain becomes an important consideration. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
996.
Lengthy records of river discharge are necessary to comprehensively assess the long‐term connection between synoptic climate forcings and nival‐regime systems in British Columbia. A regional multispecies network of tree‐ring width and ring density chronologies was built for west central British Columbia with the intention of dendrohydrologically extending short runoff records in this area. Extended records of July–August mean discharge anomalies for the Skeena and Atnarko Rivers were reconstructed back to ad 1660. Low flow events represented during the late 1600s, early 1700s and late 1800s lie beyond those experienced during the recent instrumental period for these basins. The documentation of extreme events of this magnitude necessitates consideration when planning for future water resources in this region. Supplementary dendroclimatic reconstructions of the winter Pacific North American (PNA) pressure anomaly pattern and records of mean summer temperature and end‐of‐winter snow water equivalent were also constructed. These ancillary climate records provide insight into the long‐term climate drivers of annual discharge dynamics within these nival basins. Correlation and wavelet analyses confirm the persistent relationship of synoptic climate regimes described by the Southern Oscillation Index, NINO 3.4, Pacific Decadal Oscillation and PNA indices on runoff in west central British Columbia. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
997.
998.
999.
Bruce G. Bills 《Icarus》2005,175(1):233-247
The obliquity, or angular separation between orbit normal and spin pole, is an important parameter for the geodynamics of most Solar System bodies. Tidal dissipation has driven the obliquities of the Galilean satellites of Jupiter to small, but non-zero values. We present estimates of the free and forced obliquities of these satellites using a simple secular variation model for the orbits, and spin pole precession rate estimates based on gravity field parameters derived from Galileo spacecraft encounters. The free obliquity values are not well constrained by observations, but are presumed to be very small. The forced obliquity variations depend only on the orbital variations and the spin pole precession rate parameters, which are quite well known. These variations are large enough to influence spatial and temporal patterns of tidal dissipation and tidal stress.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号