首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1690篇
  免费   88篇
  国内免费   17篇
测绘学   35篇
大气科学   117篇
地球物理   419篇
地质学   590篇
海洋学   156篇
天文学   197篇
综合类   3篇
自然地理   278篇
  2023年   6篇
  2021年   18篇
  2020年   33篇
  2019年   27篇
  2018年   37篇
  2017年   50篇
  2016年   51篇
  2015年   39篇
  2014年   50篇
  2013年   86篇
  2012年   52篇
  2011年   100篇
  2010年   81篇
  2009年   92篇
  2008年   81篇
  2007年   51篇
  2006年   85篇
  2005年   69篇
  2004年   58篇
  2003年   64篇
  2002年   52篇
  2001年   31篇
  2000年   33篇
  1999年   23篇
  1998年   37篇
  1997年   22篇
  1996年   33篇
  1995年   26篇
  1994年   28篇
  1993年   21篇
  1992年   19篇
  1991年   15篇
  1990年   24篇
  1989年   18篇
  1988年   14篇
  1987年   15篇
  1986年   18篇
  1985年   21篇
  1984年   24篇
  1983年   17篇
  1982年   30篇
  1981年   18篇
  1980年   11篇
  1979年   14篇
  1978年   17篇
  1977年   14篇
  1976年   14篇
  1975年   8篇
  1974年   8篇
  1973年   15篇
排序方式: 共有1795条查询结果,搜索用时 671 毫秒
281.
作者对鱼类细菌病原的诊断与控制作了较全面的综述。细菌病原诊断技术包括酶联免疫吸附技术(ELISA)及蛋白印迹法(Westernbloting)。细菌病原控制技术包括化学疗剂的应用,有益微生物的应用,营养添加剂,β-葡萄糖苷增强免疫抗病力,及免疫保护作用等。  相似文献   
282.
The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global‐scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional‐scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional‐scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional‐scale models with global‐scale analyses would greatly enhance knowledge of the global groundwater depletion problem.  相似文献   
283.
Eutrophication of aquatic ecosystems is one of the most pressing water quality concerns in the United States and around the world. Bank erosion has been largely overlooked as a source of nutrient loading, despite field studies demonstrating that this source can account for the majority of the total phosphorus load in a watershed. Substantial effort has been made to develop mechanistic models to predict bank erosion and instability in stream systems; however, these models do not account for inherent natural variability in input values. To quantify the impacts of this omission, uncertainty and sensitivity analyses were performed on the Bank Stability and Toe Erosion Model (BSTEM), a mechanistic model developed by the US Department of Agriculture – Agricultural Research Service (USDA‐ARS) that simulates both mass wasting and fluvial erosion of streambanks. Generally, bank height, soil cohesion, and plant species were found to be most influential in determining stability of clay (cohesive) banks. In addition to these three inputs, groundwater elevation, stream stage, and bank angle were also identified as important in sand (non‐cohesive) banks. Slope and bank height are the dominant variables in fluvial erosion modeling, while erodibility and critical shear stress had low sensitivity indices; however, these indices do not reflect the importance of critical shear stress in determining the timing of erosion events. These results identify important variables that should be the focus of data collection efforts while also indicating which less influential variables may be set to assumed values. In addition, a probabilistic Monte‐Carlo modeling approach was applied to data from a watershed‐scale sediment and phosphorus loading study on the Missisquoi River, Vermont to quantify uncertainty associated with these published results. While our estimates aligned well with previous deterministic modeling results, the uncertainty associated with these predictions suggests that they should be considered order of magnitude estimates only. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
284.
Small, steep watersheds are prolific sediment sources from which sediment flux is highly sensitive to climatic changes. Storm intensity and frequency are widely expected to increase during the 21st century, and so assessing the response of small, steep watersheds to extreme rainfall is essential to understanding landscape response to climate change. During record winter rainfall in 2016–2017, the San Lorenzo River, coastal California, had nine flow peaks representing 2–10‐year flood magnitudes. By the third flood, fluvial suspended sediment showed a regime shift to greater and coarser sediment supply, coincident with numerous landslides in the watershed. Even with no singular catastrophic flood, these flows exported more than half as much sediment as had a 100‐year flood 35 years earlier, substantially enlarging the nearshore delta. Annual sediment load in 2017 was an order of magnitude greater than during an average‐rainfall year, and 500‐fold greater than in a recent drought. These anomalous sediment inputs are critical to the coastal littoral system, delivering enough sediment, sometimes over only a few days, to maintain beaches for several years. Future projections of megadroughts punctuated by major atmospheric‐river storm activity suggest that interannual sediment‐yield variations will become more extreme than today in the western USA, with potential consequences for coastal management, ecosystems, and water‐storage capacity. The occurrence of two years with major sediment export over the past 35 years that were not associated with extremes of the El Niño Southern Oscillation or Pacific Decadal Oscillation suggests caution in interpreting climatic signals from marine sedimentary deposits derived from small, steep, coastal watersheds, to avoid misinterpreting the frequencies of those cycles. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
285.
Water runoff and sediment transport from agricultural uplands are substantial threats to water quality and sustained crop production. To improve soil and water resources, farmers, conservationists, and policy‐makers must understand how landforms, soil types, farming practices, and rainfall interact with water runoff and soil erosion processes. To that end, the Iowa Daily Erosion Project (IDEP) was designed and implemented in 2003 to inventory these factors across Iowa in the United States. IDEP utilized the Water Erosion Prediction Project (WEPP) soil erosion model along with radar‐derived precipitation data and government‐provided slope, soil, and management information to produce daily estimates of soil erosion and runoff at the township scale (93 km2 [36 mi2]). Improved national databases and evolving remote sensing technology now permit the derivation of slope, soil, and field‐level management inputs for WEPP. These remotely sensed parameters, along with more detailed meteorological data, now drive daily WEPP hillslope soil erosion and water runoff estimates at the small watershed scale, approximately 90 km2 (35 mi2), across sections of multiple Midwest states. The revisions constitute a substantial improvement as more realistic field conditions are reflected, more detailed weather data are utilized, hill slope sampling density is an order of magnitude greater, and results are aggregated based on surface hydrology enabling further watershed research and analysis. Considering these improvements and the expansion of the project beyond Iowa it was renamed the Daily Erosion Project (DEP). Statistical and comparative evaluations of soil erosion simulations indicate that the sampling density is adequate and the results are defendable. The modeling framework developed is readily adaptable to other regions given suitable inputs. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
286.
Temper sands in prehistoric potsherds of the Mariana Islands include terrigenous detritus derived from Paleogene volcanic bedrock and calcareous grains derived chiefly from modern fringing reefs, but also in part from uplifted Neogene limestones overlying volcanic bedrock. Calcareous sands are nondiagnostic of island of origin, but volcanic sands and the terrigenous component of hybrid sands composed of mixed terrigenous and calcareous grain types can be traced to geologic sources on Saipan and Guam, the only occupied islands where volcanic bedrock is extensively exposed. Quartzose tempers of several types were derived exclusively from dacitic volcanic rocks on Saipan. Nonquartzose tempers of andesitic parentage derive from both Saipan and Guam, but abundance of orthopyroxene as well as clinopyroxene is diagnostic of Saipan andesitic tempers, the presence of olivine is diagnostic of selected tempers from Guam, and placer temper sands rich in heavy ferromagnesian minerals occur only in sherds on Guam. Temper analysis documents widespread ceramic transfer from Saipan to other islands throughout Mariana prehistory, and more restricted ceramic transfer from Guam to nearby Rota, although the origin of some andesitic temper types is petrographically indeterminate. © 2001 John Wiley & Sons, Inc.  相似文献   
287.
288.
This paper presents a system approaching fully automatic 3D modeling of large-scale environments. Our system takes as input either a video stream or collection of photographs obtained from Internet photo sharing web-sites such as Flickr. The system achieves high computational performance through algorithmic optimizations for efficient robust estimation, the use of image-based recognition for efficient grouping of similar images, and two-stage stereo estimation for video streams that reduces the computational cost while maintaining competitive modeling results. In addition to algorithmic advances, we achieve a major improvement in computational speed through parallelization and execution on commodity graphics hardware. These improvements lead to real-time video processing and to reconstruction from tens of thousands of images within the span of a day on a single commodity computer. We demonstrate modeling results on a variety of real-world video sequences and photo collections.  相似文献   
289.
Although Late Cambrian microbial build-ups were recognized in the Point Peak Member of the Wilberns Formation in Central Texas (USA) nearly 70 years ago, only a few studies focused specifically on the build-ups themselves. This study focuses on the interpretation of the regional (15 measured sections described in literature representing an area of 8000 km2) and local (field and drone photogrammetry studies in a 25 km2 area from within south Mason County) microbial build-up occurrence, describes their growth phases and details their interactions with the surrounding inter-build-up sediments. The study establishes the occurrence of microbial build-ups in the lower and upper Point Peak members (the Point Peak Member is informally broken up into the lower Point Peak and the upper Point Peak members separated by Plectotrophia zone). The lower Point Peak Member consists of three <1 m thick microbial bioherms and biostrome units, in addition to heterolithic and skeletal/ooid grainstone and packstone beds. One, up to 14 m thick, microbial unit associated with inter-build-up skeletal and ooid grainstone and packstone beds, intercalated with mixed siliciclastic–carbonate silt beds, characterizes the upper Point Peak member. The microbial unit in the upper Point Peak member displays a three-phase growth evolution, from an initial colonization phase on flat based, rip-up clast lenses, to a second aggradation and lateral expansion phase, into a third well-defined capping phase. The ultimate demise of the microbial build-ups is interpreted to have been triggered by an increase of water turbidity caused by a sudden influx of fine siliciclastics. The lower Point Peak member represents inner ramp shallow subtidal and intertidal facies and the upper Point Peak member corresponds to mid-outer ramp subtidal facies. Understanding the morphological architecture and depositional context of these features is of importance for identifying signatures of early life on Earth.  相似文献   
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号