首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1933篇
  免费   79篇
  国内免费   26篇
测绘学   49篇
大气科学   154篇
地球物理   472篇
地质学   687篇
海洋学   184篇
天文学   249篇
综合类   4篇
自然地理   239篇
  2023年   8篇
  2022年   10篇
  2021年   24篇
  2020年   45篇
  2019年   35篇
  2018年   53篇
  2017年   64篇
  2016年   67篇
  2015年   47篇
  2014年   57篇
  2013年   94篇
  2012年   60篇
  2011年   116篇
  2010年   102篇
  2009年   109篇
  2008年   90篇
  2007年   61篇
  2006年   89篇
  2005年   77篇
  2004年   61篇
  2003年   73篇
  2002年   59篇
  2001年   43篇
  2000年   41篇
  1999年   34篇
  1998年   34篇
  1997年   25篇
  1996年   33篇
  1995年   26篇
  1994年   28篇
  1993年   23篇
  1992年   20篇
  1991年   13篇
  1990年   19篇
  1989年   20篇
  1988年   14篇
  1987年   11篇
  1986年   21篇
  1985年   22篇
  1984年   24篇
  1983年   19篇
  1982年   33篇
  1981年   19篇
  1980年   8篇
  1979年   14篇
  1978年   15篇
  1977年   12篇
  1976年   11篇
  1974年   7篇
  1973年   16篇
排序方式: 共有2038条查询结果,搜索用时 15 毫秒
91.
Double-packer injection tests have been carried out in a borehole in the Chalk of Hampshire and a borehole in the Permian Penrith Sandstone of Cumbria, England. The tests have been supplemented by borehole logging and television inspections and by laboratory measurements on cores. A new mathematical treatment has enabled results to be calculated for injection test intervals containing fissures. In both formations, transmissivity immediately around the borehole is dominated by a few major fissures. In the Penrith Sandstone there is good agreement between intergranular hydraulic conductivity measurements and packer-test results in the portions of the borehole which do not contain major fissures. In the Chalk, the packer-test values are always higher than the intergranular measurements, suggesting that some degree of fissuring is present throughout.  相似文献   
92.
Landscape evolution models (LEMs) have the capability to characterize key aspects of geomorphological and hydrological processes. However, their usefulness is hindered by model equifinality and paucity of available calibration data. Estimating uncertainty in the parameter space and resultant model predictions is rarely achieved as this is computationally intensive and the uncertainties inherent in the observed data are large. Therefore, a limits-of-acceptability (LoA) uncertainty analysis approach was adopted in this study to assess the value of uncertain hydrological and geomorphic data. These were used to constrain simulations of catchment responses and to explore the parameter uncertainty in model predictions. We applied this approach to the River Derwent and Cocker catchments in the UK using a LEM CAESAR-Lisflood. Results show that the model was generally able to produce behavioural simulations within the uncertainty limits of the streamflow. Reliability metrics ranged from 24.4% to 41.2% and captured the high-magnitude low-frequency sediment events. Since different sets of behavioural simulations were found across different parts of the catchment, evaluating LEM performance, in quantifying and assessing both at-a-point behaviour and spatial catchment response, remains a challenge. Our results show that evaluating LEMs within uncertainty analyses framework while taking into account the varying quality of different observations constrains behavioural simulations and parameter distributions and is a step towards a full-ensemble uncertainty evaluation of such models. We believe that this approach will have benefits for reflecting uncertainties in flooding events where channel morphological changes are occurring and various diverse (and yet often sparse) data have been collected over such events.  相似文献   
93.
In the work reported here the comprehensive physics‐based Integrated Hydrology Model (InHM) was employed to conduct both three‐ and two‐dimensional (3D and 2D) hydrologic‐response simulations for the small upland catchment known as C3 (located within the H. J. Andrews Experimental Forest in Oregon). Results from the 3D simulations for the steep unchannelled C3 (i) identify subsurface stormflow as the dominant hydrologic‐response mechanism and (ii) show the effect of the down‐gradient forest road on both the surface and subsurface flow systems. Comparison of the 3D results with the 2D results clearly illustrates the importance of convergent subsurface flow (e.g. greater pore‐water pressures in the hollow of the catchment for the 3D scenario). A simple infinite‐slope model, driven by subsurface pore‐water pressures generated from the 3D and 2D hydrologic‐response simulations, was employed to estimate slope stability along the long‐profile of the C3 hollow axis. As expected, the likelihood of slope failure is underestimated for the lower pore pressures from the 2D hydrologic‐response simulation compared, in a relative sense, to the higher pore pressures from the 3D hydrologic response simulation. The effort reported herein provides a firm quantitative foundation for generalizing the effects that forest roads can have on near‐surface hydrologic response and slope stability at the catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
94.
Post festum     
  相似文献   
95.
Cerro Pinto is a Pleistocene rhyolite tuff ring-dome complex located in the eastern Trans-Mexican Volcanic Belt. The complex is composed of four tuff rings and four domes that were emplaced in three eruptive stages marked by changes in vent location and eruptive character. During Stage I, vent clearing produced a 1.5-km-diameter tuff ring that was then followed by emplacement of two domes of approximately 0.2 km3 each. With no apparent hiatus in activity, Stage II began with the explosive formation of a tuff ring ~2 km in diameter adjacent to and north of the earlier ring. Subsequent Stage II eruptions produced two smaller tuff rings within the northern tuff ring as well as a small dome that was mostly destroyed by explosions during its growth. Stage III involved the emplacement of a 0.04 km3 dome within the southern tuff ring. Cerro Pinto’s eruptive history includes sequences that follow simple rhyolite-dome models, in which a pyroclastic phase is followed immediately by effusive dome emplacement. Some aspects of the eruption, however, such as the explosive reactivation of the system and explosive dome destruction, are more complex. These events are commonly associated with polygenetic structures, such as stratovolcanoes or calderas, in which multiple pulses of magma initiate reactivation. A comparison of major and trace element geochemistry with nearby Pleistocene silicic centers does not show indication of any co-genetic relationship, suggesting that Cerro Pinto was produced by a small, isolated magma chamber. The compositional variation of the erupted material at Cerro Pinto is minimal, suggesting that there were not multiple pulses of magma responsible for the complex behavior of the volcano and that the volcanic system was formed in a short time period. The variety of eruptive style observed at Cerro Pinto reflects the influence of quickly exhaustible water sources on a short-lived eruption. The rising magma encountered small amounts of groundwater that initiated eruption phases. Once a critical magma:water ratio was exceeded, the eruptions became dry and sub-plinian to plinian. The primary characteristic of Cerro Pinto is the predominance of fall deposits, suggesting that the level at which rising magma encountered water was deep enough to allow substantial fragmentation after the water source was exhausted. Isolated rhyolite domes are rare and are not currently viewed as prominent volcanic hazards, but the evolution of Cerro Pinto demonstrates that individual domes may have complex cycles, and such complexity must be taken into account when making hazard risk assessments.  相似文献   
96.
Starting in 2008, a 4‐year tracer study was conducted to evaluate ambient changes in groundwater concentrations of a 1,3,6‐naphthalene trisulfonate tracer that was added to drill water. Samples were collected under open borehole conditions and after installing a multilevel groundwater monitoring system completed with 11 discrete monitoring zones within dense and fractured basalt and sediment layers in the eastern Snake River aquifer. The study was done in cooperation with the U.S. Department of Energy to test whether ambient fracture flow conditions were sufficient to remove the effects of injected drill water prior to sample collection. Results from thief samples indicated that the tracer was present in minor concentrations 28 days after coring, but was not present 6 months after coring or 7 days after reaming the borehole. Results from sampling the multilevel monitoring system indicated that small concentrations of the tracer remained in 5 of 10 zones during some period after installation. All concentrations were several orders of magnitude lower than the initial concentrations in the drill water. The ports that had remnant concentrations of the tracer were either located near sediment layers or were located in dense basalt, which suggests limited groundwater flow near these ports. The ports completed in well‐fractured and vesicular basalt had no detectable concentrations.  相似文献   
97.
98.
Several methods for characterizing the occurrence and rate of nitrate attenuation were tested at a field site near Monument Valley, Arizona. Spatial and temporal nitrate concentration data collected from a transect of monitoring wells located along the plume centerline were analyzed to evaluate the overall rates of natural attenuation. The occurrence and rate of denitrification was evaluated through microcosm experiments, nitrogen isotopic fractionation analysis, and solute-transport modeling. First-order denitrification-rate coefficients calculated with each method were comparable. In addition, the composite natural attenuation rate coefficient was similar to the denitrification-rate coefficients, which suggests that microbially induced decay primarily controls nitrate attenuation at the site. This research highlights the benefits associated with a multiple-method approach for the characterization of natural attenuation.  相似文献   
99.
A wide range of stoichiometries has been previously proposed for soluble iron sulfide species and there is no general agreement on their importance in natural waters. The solubility of Fe(II) in 0.1 M NaClO4 equilibrated at 20 - 0.1°C with various partial pressures of H2S (0.1, 0.001, 0.0001, 0.00001 MPa) was measured in the pH range 3.1-7.9. Equilibrium was established within 1-6 h when amorphous FeS was the solid phase. The results could all be fitted using values for the solubility product constant (I = 0) of p*Ks = 3.00 - 0.12 and of the stability constant for a soluble Fe(HS) 2 species (I = 0) of p#2 = -6.45 - 0.12 where *Ks = aFe2+ · aHS-/aH+ and #2 = aFe(HS) 2/aFe2+ · (aHS-)2. Any soluble species of the form Fex (HS) 2x where x = &gif1; would fit the data equally well. Measurements at different partial pressures are inconsistent with labile species of the form FexSx. There was no evidence for a Fe(HS) + species. When a solution is saturated with respect to amorphous FeS, Fe(HS) 2 will only be a significant proportion of Fe(II) when S(-II) is higher than 0.2mmoll-1. The constants for Fe(HS) 2 or Fex (HS) 2x (x S 2) are consistent with all freshwater data where constant values of measured ion activity products provide no evidence for soluble complex formation. For marine waters with high sulfide concentrations (S 6mmol l-1), measured concentrations of Fe(II) are consistent with there being negligible soluble iron sulfide. The data are better fitted if the dissolved species are polymeric as predicted concentrations of the monomer Fe(HS) 2 are significant. These findings suggest that rather than the dissolved species being Fe(HS) 2, it is probably polymeric, that is Fex (HS) 2x (x S 2).  相似文献   
100.
Marija  Lukovic  Martin  Ziegler  Jordan  Aaron  Matthew  Perras 《Natural Hazards》2022,110(1):451-485
Natural Hazards - The UNESCO world heritage site Valley of the Kings or Wadi el-Moluk (???? ??????) near Luxor, Egypt, hosts unique...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号