首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   8篇
大气科学   15篇
地球物理   25篇
地质学   55篇
海洋学   9篇
天文学   18篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   7篇
  2015年   5篇
  2014年   10篇
  2013年   17篇
  2012年   5篇
  2011年   8篇
  2010年   8篇
  2009年   4篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1993年   2篇
  1990年   2篇
  1989年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有124条查询结果,搜索用时 0 毫秒
91.
The decomposition of the wave field into optimized Gaussian packets represents a crucial step of the Gaussian packet prestack depth migration algorithm. The shape of optimized Gaussian packets, in the plane perpendicular to the central ray of the packet, depends not only on the frequency, but also on the coordinate of the intersection of the central ray of a Gaussian packet with the profile, on its arrival time, and on the component of the slowness vector along the profile. We express the amplitude of a Gaussian packet in the form of an integral transform similar to the forward coherentstate transform. Our method is suitable for a smooth distribution of the parameter determining the shape of a packet in the plane perpendicular to its central ray.  相似文献   
92.
The assessment of seismic hazard at five selected sites in the Sannio-Matese region is based on the computer program SRAMSC. Owing to the extensive historical data base for the output parameter, the MSK intensiy is chosen. The seismicity model is made up of five narrow area seismic sources. Circular or elliptical macroseismic fields are assigned to individual sources. A generalized Kövesligethy equation is used for this purpose as the attenuation relationship. The study reveals similar and a rather high hazard at the sites at Benevento, Boiano, and Melfi, which are located in the zone of highest seismic activity. At the Pomigliano and Lucera sites, the assessed hazard is much lower.  相似文献   
93.
94.
An investigation of the thermal waters in the Ústí nad Labem area in the northeastern part of the Eger Rift has been carried out, with the principal objective of determining their origin. Waters from geothermal reservoirs in the aquifers of the Bohemian Cretaceous Basin (BCB) from depths of 240 to 616 m are exploited here. For comparison, thermal waters of the adjacent Teplice Spa area were also incorporated into the study. Results based on water chemistry and isotopes indicate mixing of groundwater from aquifers of the BCB with groundwater derived from underlying crystalline rocks of the Erzgebirge Mts. Unlike thermal waters in Dě?ín, which are of Ca–HCO3 type, there are two types of thermal waters in Ústí nad Labem, Na–HCO3–Cl–SO4 type with high TDS values and Na–Ca–HCO3–SO4 type with low TDS values. Carbon isotope data, speciation calculations, and inverse geochemical modeling suggest a significant input of endogenous CO2 at Ústí nad Labem in the case of high TDS groundwaters. Besides CO2 input, both silicate dissolution and cation exchange coupled with dissolution of carbonates may explain the origin of high TDS thermal waters equally well. This is a consequence of similar δ13C and 14C values in endogenous CO2 and carbonates (both sources have 14C of 0 pmc, endogenous CO2 δ13C around −3‰, carbonates in the range from −5‰ to +3‰ V-PDB). The source of Cl seems to be relict brine formed in Tertiary lakes, which infiltrated into the deep rift zone and is being flushed out. The difference between high and low TDS groundwaters in Ústí nad Labem is caused by location of the high mineralization groundwater wells in CO2 emanation centers linked to channel-like conduits. This results in high dissolution rates of minerals and in different δ13C(DIC) and 14C(DIC) fingerprints. A combined δ34S and δ18O study of dissolved SO4 indicates multiple SO4 sources, involving SO4 from relict brines and oxidation of H2S. The study clearly demonstrates potential problems encountered at sites with multiple sources of C, where several evolutionary groundwater scenarios are possible.  相似文献   
95.
We derive a new formulation for the compositional compressible two-phase flow in porous media. We consider a liquid–gas system with two components: water and hydrogen. The formulation considers gravity, capillary effects, and diffusivity of each component. The main feature of this formulation is the introduction of the global pressure variable that partially decouples the system equations. To formulate the final system, and in order to avoid primary unknowns changing between one-phase and two-phase zones, a second persistent variable is introduced: the total hydrogen mass density. The derived system is written in terms of the global pressure and the total hydrogen mass density. The system is capable of modeling the flows in both one and two-phase zones with no changes of the primary unknowns. The mathematical structure is well defined: the system consists of two nonlinear parabolic equations, the global pressure equation, and the total hydrogen mass density equation. The derived formulation is fully equivalent to the original one. Numerical simulations show ability of this new formulation to model efficiently the phase appearance and disappearance.  相似文献   
96.
Summary The crop growth model CERES-Maize is used to estimate the direct (through enhanced fertilisation effect of ambient CO2) and indirect (through changed climate conditions) effects of increased concentration of atmospheric CO2 on maize yields. The analysis is based on multi-year crop model simulations run with daily weather series obtained alternatively by a direct modification of observed weather series and by a stochastic weather generator. The crop model is run in two settings: stressed yields are simulated in water and nutrient limited conditions, potential yields in water and nutrient unlimited conditions. The climate change scenario was constructed using the output from the ECHAM3/T42 model (temperature), regression relationships between temperature and solar radiation, and an expert judgement (precipitation). Results: (i) After omitting the two most extreme misfits, the standard error between the observed and modelled yields is 11%. (ii) The direct effect of doubled CO2: The stressed yields would increase by 36–41% in the present climate and by 61–66% in the 2 × CO2 climate. The potential yields would increase only by 9–10% as the improved water use efficiency does not apply. (iii) The indirect effect of doubled CO2: The stressed yields would decrease by 27–29% (14–16%) at present (doubled) ambient CO2 concentration. The increased temperature shortens the phenological phases and does not allow for the optimal development of the crop. The simultaneous decrease of precipitation and increase of temperature and solar radiation deepen the water stress, thereby reducing the yields. The reduction of the potential yields is significantly smaller as the effect of the increased water stress does not apply. (iv) If both direct and indirect effects of doubled CO2 are considered, the stressed yields should increase by 17–18%, and the potential yields by 5–14%. (v) The decrease of the stressed yields due to the indirect effect may be reduced by applying earlier planting dates. Received March 9, 2001 Revised September 25, 2001  相似文献   
97.
Tile drainage water temperatures and discharge rates were measured in five highland watersheds of which most are underlain by acid crystalline rock. One of them, Dehtá?e in the Bohemo‐Moravian highland (Czech Republic), was studied in greater detail. The aim was to evaluate water temperature monitoring as a means of determining the source and pathway of drainage runoff during high‐flow events. Rapid increase in drainage discharge was accompanied by rapid change in water temperature. In winter, the rising limb of the hydrograph was accompanied by a decrease in temperature, and the falling limb was associated with a corresponding temperature increase. In summer, the trends were reversed. These data suggest that the water temperature changes are caused by the fastest component of drainage runoff, water from a precipitation event or snowmelt, which can be separated from the remainder of the hydrograph. Measurements of hydraulic conductivity, soil moisture content, soil temperature, and groundwater table level indicate that the major portion of the event water causing this effect infiltrates in the watershed recharge zone where soils are permeable, enters the weathered bedrock, flows preferentially and rapidly down the slope along disjoint fissures in the bedrock, finally emerging as ascending springs, and is, for the most part, intercepted by the tile drainage systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号