首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   12篇
  国内免费   6篇
测绘学   16篇
大气科学   14篇
地球物理   72篇
地质学   216篇
海洋学   18篇
天文学   24篇
综合类   1篇
自然地理   34篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   12篇
  2018年   14篇
  2017年   8篇
  2016年   8篇
  2015年   15篇
  2014年   16篇
  2013年   19篇
  2012年   20篇
  2011年   23篇
  2010年   28篇
  2009年   32篇
  2008年   29篇
  2007年   18篇
  2006年   22篇
  2005年   6篇
  2004年   13篇
  2003年   4篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   6篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   1篇
  1974年   3篇
排序方式: 共有395条查询结果,搜索用时 343 毫秒
341.
High spatial resolution satellite data contribute to improving land cover/land use (LCLU) classification in agriculture. A classification procedure based on Quickbird satellite image data was developed to map LCLU of diversified agriculture at sub-communal and communal level (7 km2). Segmentation performance of the panchromatic band in combination with high pass filters (HPF) was tested first. Accuracy of field boundary delineation was evaluated by an object-based segmentation, a per-field and a manual classification, along with a quantitative accuracy assessment. Sub-communal classification revealed an overall accuracy of 84% with a κ coefficient of 0.77 for the per-field vector segmentation compared to an overall accuracy of 56–60% and a κ coefficient of 0.37–0.42 for object-based approaches. Per-field vector segmentation was thus superior and used for LCLU classification at communal level. Overall accuracy scored 83% and the κ coefficient 0.7. In diversified agriculture, per-field vector segmentation and classification achieved higher classification results.  相似文献   
342.
The response of tidal and residual currents to small-scale morphological differences over abrupt deep-sea topography (Seine Seamount) was estimated for bathymetry grids of different spatial resolution. Local barotropic tidal model solutions were obtained for three popular and publicly available bathymetry grids (Smith and Sandwell TOPO8.2, ETOPO1, and GEBCO08) to calculate residual currents from vessel-mounted acoustic Doppler current profiler (VM-ADCP) measurements. Currents from each tidal solution were interpolated to match the VM-ADCP ensemble times and locations. Root mean square (RMS) differences of tidal and residual current speeds largely follow topographic deviations and were largest for TOPO8.2-based solutions (up to 2.8 cm?s?1) in seamount areas shallower than 1,000 m. Maximum RMS differences of currents obtained from higher resolution bathymetry did not exceed 1.7 cm?s?1. Single depth-dependent maximum residual flow speed differences were up to 8 cm?s?1 in all cases. Seine Seamount is located within a strong mean flow environment, and RMS residual current speed differences varied between 5 % and 20 % of observed peak velocities of the ambient flow. Residual flow estimates from shipboard ADCP data might be even more sensitive to the choice of bathymetry grids if barotropic tidal models are used to remove tides over deep oceanic topographic features where the mean flow is weak compared to the magnitude of barotropic tidal, or baroclinic currents. Realistic topography and associated flow complexity are also important factors for understanding sedimentary and ecological processes driven and maintained by flow–topography interaction.  相似文献   
343.
344.
We investigate the effects of ram pressure stripping of spiral galaxies using a numerical model that is directly confronted with interferometric observations. The current status of our research is presented. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
345.
We present a novel technique for visualizing tensors in three dimensional (3D) space. Of particular interest is the visualization of stress tensors resulting from 3D numerical simulations in computational geomechanics. To this end we present three different approaches to visualizing tensors in 3D space, namely hedgehogs, hyperstreamlines and hyperstreamsurfaces. We also present a number of examples related to stress distributions in 3D solids subjected to single and load couples. In addition, we present stress visualizations resulting from single‐pile and pile‐group computations. The main objective of this work is to investigate various techniques for visualizing general Cartesian tensors of rank 2 and it's application to geomechanics problems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
346.
The aim of this study was to design and test a new tool for (i) the quantitative in situ monitoring of Fe(III) reduction in soils and (ii) the tracking of the potential mineralogical changes of Fe-oxides. The tool consists of small (2 × 2 × 0.2 cm) striated polymer plates coated with synthetic pure ferrihydrite or As-doped ferrihydrite (Fh–As). These slides were then inserted within two different horizons (organo-mineral and albic) located in a wetland soil with alternating redox conditions. Dissolution was quantified by X-ray fluorescence (XRF) analyses of total metal contents before and after insertion into the soil. The crystallographic evolution of Fe-oxides was characterized by scanning electron microscope equipped with an energy-dispersive spectrometer (SEM–EDS). Over the months, the ferrihydrite progressively disappeared, at rates comparable to those previously measured in laboratory studies, i.e. in the 1–10 × 10−12 mol Fe m−2 s−1 range. SEM observations indicate that the supports were highly colonized by bacteria and biofilms in the organo-mineral horizon, suggesting a biological-mediated process, while the albic horizon appeared to be characterized by a mostly chemical-mediated process. In the albic horizon, Fe-sulphide and other micro-precipitates were formed after 7 months of incubation in balance with a quasi dissolution of initial Fe-oxides.  相似文献   
347.
348.
A series of large diameter calcite–muscovite aggregates has been prepared from calcite and muscovite powders, in order to gain a better understanding of how texture develops in impure carbonate rocks. The development of the microstructure and the crystallographic preferred orientation (CPO, texture) during the preparation process is described. The synthetic rocks have been fabricated from powders of calcite and muscovite by uniaxial cold-pressing at loads up to 400 MPa and subsequent hot isostatic pressing (HIPping) at pressures of 150 to 170 MPa and a temperature of 670 °C. The resulting textures and microstructures are homogeneous throughout the samples. The calcite CPO is generated by rigid body rotation and twinning during cold-pressing and is not significantly altered by recrystallization during HIPping. Grain growth during HIPping is observed in pure calcite samples, but is inhibited through high porosity and the presence of muscovite in the mixed aggregates. The preferred orientation of the calcite c-axes is found to increase with increasing uniaxial cold pressure, and to be independent of the muscovite content. The magnetic bulk susceptibility of the starting material has been changed by the formation of ferromagnetic impurities during fabrication. Comparison of the samples to natural calcite fabrics from fault zones show the potential of the experiments and fabric analyses presented to analyze and to better understand the deformation mechanisms of fault zones.  相似文献   
349.
350.
Sulfur partitioning between melt and fluid phase largely controls the environmental impact of volcanic eruptions. Fluid/melt partitioning data also provide the physical basis for interpreting changes in volcanic gas compositions that are used in eruption forecasts. To better constrain some variables that control the behavior of sulfur in felsic systems, in particular the interaction between different volatiles, we studied the partitioning of sulfur between aqueous fluids and haplogranitic melts at 200 MPa and 750–850 °C as a function of oxygen fugacity (Ni–NiO or Re–ReO2 buffer), melt composition (Al/(Na?+?K) ratio), and fluid composition (NaCl and CO2 content). The data confirm a first-order influence of oxygen fugacity on the partitioning of sulfur. Under “reducing conditions” (Ni–NiO buffer), Dfluid/melt is nearly one order of magnitude larger (323?±?14 for a metaluminous melt) than under “oxidizing conditions” (Re–ReO2 buffer; 74?±?5 for a metaluminous melt). This effect is likely related to a major change in sulfur speciation in both melt and fluid. Raman spectra of the quenched fluids show the presence of H2S and HS? under reducing conditions and of SO42? and HSO4? under oxidizing conditions, while SO2 is undetectable. The latter observation suggests that already at the Re–ReO2 buffer, sulfur in the fluid is almost completely in the S6+ state and, therefore, more oxidized than expected according to current models. CO2 in the fluid (up to xCO2?=?0.3) has no effect on the fluid/melt partitioning of sulfur, neither under oxidizing nor under reducing conditions. However, the effect of NaCl depends on redox state. While at oxidizing conditions, Dfluid/melt is independent of xNaCl, the fluid/melt partition coefficient strongly decreases with NaCl content under reducing conditions, probably due to a change from H2S to NaSH as dominant sulfur species in the fluid. A decrease of Dfluid/melt with alkali content in the melt is observed over the entire compositional range under reducing conditions, while it is prominent only between the peraluminous and metaluminous composition in oxidizing experiments. Overall, the experimental results suggest that for typical oxidized, silicic to intermediate subduction zone magmas, the degassing of sulfur is not influenced by the presence of other volatiles, while under reducing conditions, strong interactions with chlorine are observed. If the sulfur oxidation state is preserved during an explosive eruption, a large fraction of the sulfur released from oxidized magmas may be in the S6+ state and may remain undetected by conventional methods that only measure SO2. Accordingly, the sulfur yield and the possible climatic impact of some eruptions may be severely underestimated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号