首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516篇
  免费   6篇
  国内免费   32篇
测绘学   3篇
大气科学   58篇
地球物理   33篇
地质学   304篇
海洋学   30篇
天文学   18篇
自然地理   108篇
  2014年   5篇
  2013年   30篇
  2012年   8篇
  2011年   10篇
  2010年   21篇
  2009年   40篇
  2008年   10篇
  2007年   9篇
  2006年   19篇
  2005年   24篇
  2004年   11篇
  2003年   11篇
  2002年   13篇
  2001年   9篇
  2000年   13篇
  1999年   15篇
  1998年   7篇
  1997年   29篇
  1996年   25篇
  1995年   14篇
  1994年   16篇
  1993年   20篇
  1992年   19篇
  1991年   16篇
  1990年   11篇
  1989年   18篇
  1988年   12篇
  1987年   10篇
  1986年   11篇
  1985年   4篇
  1984年   6篇
  1983年   6篇
  1982年   6篇
  1980年   3篇
  1978年   7篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   4篇
  1972年   4篇
  1971年   2篇
  1969年   3篇
  1967年   4篇
  1966年   3篇
  1954年   4篇
  1934年   12篇
  1927年   5篇
  1926年   2篇
  1923年   4篇
排序方式: 共有554条查询结果,搜索用时 31 毫秒
471.
472.
Three ground-based Raman lidars and an airborne high-spectral-resolution lidar (HSRL) were operated during SAMUM 2006 in southern Morocco to measure height profiles of the volume extinction coefficient, the extinction-to-backscatter ratio and the depolarization ratio of dust particles in the Saharan dust layer at several wavelengths. Aerosol Robotic Network (AERONET) Sun photometer observations and radiosoundings of meteorological parameters complemented the ground-based activities at the SAMUM station of Ouarzazate. Four case studies are presented. Two case studies deal with the comparison of observations of the three ground-based lidars during a heavy dust outbreak and of the ground-based lidars with the airborne lidar. Two further cases show profile observations during satellite overpasses on 19 May and 4 June 2006. The height resolved statistical analysis reveals that the dust layer top typically reaches 4–6 km height above sea level (a.s.l.), sometimes even 7 km a.s.l.. Usually, a vertically inhomogeneous dust plume with internal dust layers was observed in the morning before the evolution of the boundary layer started. The Saharan dust layer was well mixed in the early evening. The 500 nm dust optical depth ranged from 0.2–0.8 at the field site south of the High Atlas mountains, Ångström exponents derived from photometer and lidar data were between 0–0.4. The volume extinction coefficients (355, 532 nm) varied from 30–300 Mm−1 with a mean value of 100 Mm−1 in the lowest 4 km a.s.l.. On average, extinction-to-backscatter ratios of 53–55 sr (±7–13 sr) were obtained at 355, 532 and 1064 nm.  相似文献   
473.
To constrain the relatively uncertain anthropogenic impact on the organic aerosol load, radiocarbon analyses were performed on aerosol samples, collected year-round, at six non-urban sites including a maritime background and three remote mountain stations, lying on a west-east transect over Western Europe. From a crude three component model supported by TOC and levoglucosan filter data, the fossil fuel, biomass burning and biogenic TOC fraction are estimated, showing at all stations year-round, a relatively constant fossil fuel fraction of around  (26 ± 6)%  , a dominant biogenic contribution of on average  (73 ± 7)%  in summer and the continental as well as the maritime background TOC to be only about 50% biogenic. Assuming biomass burning as completely anthropogenic, the carbonaceous aerosol concentration at the mountain sites was found to have increased by a factor of up to  (1.4 ± 0.2)  in summer and up to  (2.5 ± 1.0)  in winter. This figure is significantly lower, however, than the respective TOC change since pre-industrial times seen in an Alpine ice core. Reconciling both observations would require an increase, since pre-industrial times, of the background biogenic aerosol load, which is estimated at a factor of 1.3–1.7.  相似文献   
474.
The dynamics of non-divergent flow on a rotating sphere are described by the conservation of absolute vorticity. The analytical study of the non-linear barotropic vorticity equation is greatly facilitated by the expansion of the solution in spherical harmonics and truncation at low order. The normal modes are the well-known Rossby–Haurwitz (RH) waves, which represent the natural oscillations of the system. Triads of RH waves, which satisfy conditions for resonance, are of critical importance for the distribution of energy in the atmosphere.
We show how non-linear interactions of resonant RH triads may result in dynamic instability of large-scale components. We also demonstrate a mathematical equivalence between the equations for an orographically forced triad and a simple mechanical system, the forced-damped swinging spring. This equivalence yields insight concerning the bounded response to a constant forcing in the absence of damping. An examination of triad interactions in atmospheric reanalysis data would be of great interest.  相似文献   
475.
Lifting of dust particles by dust devils and convective plumes may significantly contribute to the global mineral dust budget. During the Saharan Mineral Dust Experiment (SAMUM) in May–June 2006 vertical profiling of dusty plumes was performed for the first time. Polarization lidar observations taken at Ouarzazate (30.9°N, 6.9°W, 1133 m height above sea level) are analyzed. Two cases with typical and vigorous formation of convective plumes and statistical results of 5 d are discussed. The majority of observed convective plumes have diameters on order of 100–400 m. Most of the plumes (typically 50–95%) show top heights <1 km or 0.3DLH with the Saharan dust layer height DLH of typically 3–4 km. Height-to-diameter ratio is mostly 2–10. Maximum plume top height ranges from 1.1 to 2.9 km on the 5 d. 5–26 isolated plumes and clusters of plumes per hour were detected. A low dust optical depth (<0.3) favours plume evolution. Observed surface, 1 and 2–m air temperatures indicate that a difference of 17–20 K between surface and 2-m air temperature and of 0.9–1 K between the 1 and 2-m temperatures are required before convective plumes develop. Favourable horizontal wind speeds are 2–7 m s−1.  相似文献   
476.
The south-eastern United States and Gulf Coast of Mexico is physiographically diverse, although dominated by a broad coastal plain. Much of the region has a humid, warm temperate climate with little seasonality in precipitation but strong seasonality in runoff owing to high rates of summer evapotranspiration. The climate of southern Florida and eastern Mexico is subtropical with a distinct summer wet season and winter dry season. Regional climate models suggest that climate change resulting from a doubling of the pre-industrial levels of atmospheric CO2 may increase annual air temperatures by 3–4°C. Changes in precipitation are highly uncertain, but the most probable scenario shows higher levels over all but the northern, interior portions of the region, with increases primarily occurring in summer and occurring as more intense or clustered storms. Despite the increases in precipitation, runoff is likely to decline over much of the region owing to increases in evapotranspiration exceeding increases in precipitation. Only in Florida and the Gulf Coast areas of the US and Mexico are precipitation increases likely to exceed evapotranspiration increases, producing an increase in runoff. However, increases in storm intensity and clustering are likely to result in more extreme hydrographs, with larger peaks in flow but lower baseflows and longer periods of drought. The ecological effects of climate change on freshwaters of the region include: (1) a general increase in rates of primary production, organic matter decomposition and nutrient cycling as a result of higher temperatures and longer growing seasons: (2) reduction in habitat for cool water species, particularly fish and macroinvertebrates in Appalachian streams; (3) reduction in water quality and in suitable habitat in summer owing to lower baseflows and intensification of the temperature–dissolved oxygen squeeze in many rivers and reservoirs; (4) reduction in organic matter storage and loss of organisms during more intense flushing events in some streams and wetlands; (5) shorter periods of inundation of riparian wetlands and greater drying of wetland soils, particularly in northern and inland areas; (6) expansion of subtropical species northwards, including several non-native nuisance species currently confined to southern Florida; (7) expansion of wetlands in Florida and coastal Mexico, but increase in eutrophication of Florida lakes as a result of greater runoff from urban and agricultural areas; and (8) changes in the flushing rate of estuaries that would alter their salinity regimes, stratification and water quality as well as influence productivity in the Gulf of Mexico. Many of the expected climate change effects will exacerbate current anthropogenic stresses on the region's freshwater systems, including increasing demands for water, increasing waste heat loadings and land use changes that alter the quantity and quality of runoff to streams and reservoirs. Research is needed especially in several critical areas: long-term monitoring of key hydrological, chemical and biological properties (particularly water balances in small, forested catchments and temperature-sensitive species); experimental studies of the effects of warming on organisms and ecosystem processes under realistic conditions (e.g. in situ heating experiments); studies of the effects of natural hydrological variation on biological communities; and assessment of the effects of water management activities on organisms and ecosystem processes, including development and testing of management and restoration strategies designed to counteract changes in climate. © 1997 John Wiley & Sons, Ltd.  相似文献   
477.
Six drip waters, which were actively depositing stalagmites in Lower Cave, Bristol, were analysed both for discharge and luminescence properties. Drip discharges were determined for two different years, and show a complex response to surface precipitation variations. Inter annual variability in drip discharge is demonstrated to be significantly higher than intra-annual variability, and discharge was demonstrated both to increase and decrease non-linearly with increased precipitation. Drip waters demonstrate a correlation between their luminescence intensity and drip discharge, with increased luminescence in winter as more organic matter is flushed through the aquifer. The strength of the relationship between luminescence intensity and discharge increases with increased discharge. The results presented here have implications for the palaeoenvironmental interpretation of annual growth laminae and the growth rates of stalagmite samples. © 1997 John Wiley & Sons, Ltd.  相似文献   
478.
479.
Impressive flood deposits are described resulting from a catastrophic lake outburst in the Upper Chandra valley in the Lahul Himalaya, northern India. Reconstructions of the former glacial lake, Glacial Lake Batal, and the discharges were undertaken using landforms and sediment data. The glacial dam burst released 1.496 km3 of water in 0.72 days, with peak discharges of between 21000 and 27000 m3 s−1 at Batal. Dating by OSL suggests the flood occurred ca. 36.9 ± 8.4 to 43.4 ± 10.3 ka ago. This cataclysmic flood was responsible for major resedimentation and landscape modification within the Chandra valley.  相似文献   
480.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号