首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   0篇
  国内免费   2篇
大气科学   6篇
地球物理   4篇
地质学   83篇
海洋学   9篇
自然地理   18篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   6篇
  2008年   4篇
  2007年   9篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2002年   2篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   8篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   8篇
  1989年   10篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   2篇
  1963年   1篇
  1962年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
91.
92.
93.
A 1600-m-thick succession of the Miocene Horse Camp Formation (Member 2) exposed in east-central Nevada records predominantly terrigenous clastic deposition in subaerial and subaqueous fan-delta environments and nearshore and offshore lacustrine environments. These four depositional environments are distinguished by particular associations of individual facies (14 defined facies). Subaerial and subaqueous fan-delta facies associations include: ungraded, matrix-and clast-supported conglomerate; normally graded, matrix- and clast-supported conglomerate; ungraded and normally graded sandstone; and massive to poorly laminated mudstone. Subaqueous fan-delta deposits typically have dewatering structures, distorted bedding and interbedded mudstone. The subaerial fan-delta environment was characterized by debris flows, hyperconcentrated flows and minor sheetfloods; the subaqueous fan-delta environment by debris flows, high- and low-density turbidity currents, and suspension fallout. The nearshore lacustrine facies association provides examples of deposits and processes rarely documented in lacustrine environments. High-energy oscillatory wave currents, probably related to a large fetch, reworked grains as large as 2 cm into horizontally stratified sand and gravel. Offshore-directed currents produced uncommonly large (typically 1–2 m thick) trough cross-stratified sandstone. In addition, stromatolitic carbonate interbedded with stratified coarse sandstone and conglomerate suggests a dynamic environment characterized by episodic terrigenous clastic deposition under high-energy conditions alternating with periods of carbonate precipitation under reduced energy conditions. Massive and normally graded sandstone and massive to poorly laminated mudstone characterize the offshore lacustrine facies association and record deposition by turbidity currents and suspension fallout. A depositional model constructed for the Horse Camp Formation (Member 2) precludes the existence of all four depositional environments at any particular time. Rather, phases characterized by deposition in subaerial fan, nearshore lacustrine and offshore lacustrine environments alternated with phases of subaerial fan-delta, subaqueous fan-delta and offshore lacustrine deposition. This model suggests that high-energy nearshore currents due to deep water along the lake margin reworked sediment of the fan edge, thus preventing development of a subaqueous fan-delta environment and promoting development of a well-defined nearshore lacustrine environment. Low-energy nearshore currents induced by shallow water along the  相似文献   
94.
Holocene deposits of the Hawkesbury River estuary, located immediately north of Sydney on the New South Wales coast, record the complex interplay between sediment supply and relative sea-level rise within a deeply incised bedrock-confined valley system. The present day Hawkesbury River is interpreted as a wave-dominated estuarine complex, divisible into two broad facies zones: (i) an outer marine-dominated zone extending 6 km upstream from the estuary mouth that is characterized by a large, subtidal sandy flood-tidal delta. Ocean wave energy is partially dissipated by this flood-tidal delta, so that tidal level fluctuations are the predominant marine mechanism operating further landward; (ii) a river-dominated zone that is 103 km long and characterized by a well developed progradational bayhead delta that includes distributary channels, levees, and overbank deposits. This reach of the Hawkesbury River undergoes minor tidal level fluctuations and low fluvial runoff during baseflow conditions, but experiences strong flood flows during major runoff events. Fluvial deposits of the Hawkesbury River occur upstream of this zone. The focus of this paper is the Hawkesbury River bayhead delta. History of deposition within this delta over the last c. 12 ka is interpreted from six continuous cores located along the upper reaches of the Hawkesbury River. Detailed sedimentological analysis of facies, whole-core X-ray analysis of burrow traces and a chronostratigraphic framework derived from 10 C-14 dates reveal four stages of incised-valley infilling in the study area: (1) before 17 ka BP, a 0–1 m thick deposit of coarse-grained fluvial sand and silt was laid down under falling-to-lowstand sea level conditions; (2) from 17 to 6·5 ka BP, a 5–10 m thick deposit composed of fine-grained fluvial sand and silt, muddy bayhead delta and muddy central-basin deposits developed as the incised valley was flooded during eustatic sea-level rise; (3) during early highstand, between 6·5 and 3 ka BP, a 3–8 m thick bed of interbedded muddy central-basin deposits and sandy river flood deposits, formed in association with maximum flooding and progradation of sandy distributary mouth-bar deposits commenced; (4) since 3 ka BP, fluvial deposits have prograded toward the estuary mouth in distributary mouth-bar, interdistributary-bay and bayhead-delta plain environments to produce a 5–15 m thick progradational to aggradational bayhead-delta deposit. At the mouth of the Hawkesbury estuary subaqueous fluvial sands interfinger with and overlie marine sands. The Hawkesbury River bayhead-delta depositional succession provides an example of the potential for significant variation of facies within the estuarine to fluvial segment of incised-valley systems.  相似文献   
95.
Hurricane control on shelf-edge-reef architecture around Grand Cayman   总被引:3,自引:0,他引:3  
Rimming the outer shelf of Grand Cayman is a submerged, 87 km long shelf-edge reef that rises to within 12 m of mean sea level. It consists of an array of coral-armoured buttresses aligned perpendicular to shore and separated by steep-sided sediment-floored canyons. Individual buttresses have a diverse coral-dominated biota and consist of three architectural elements: a shield-like front wall colonized by platy corals, a dome-shaped crown colonized by head corals, and a shoreward-projecting spur covered by varying amounts of branching coral. Buttresses are commonly fronted by coral pinnacles that, in some areas, have amalgamated with buttress walls to produce pinnacle-and-arch structures. As margin orientation changes, shelf-edge-reef architecture shows systematic variations that are consistent with changes in fetch and height of hurricane waves. Along margins exposed to fully developed storm waves, shelf-edge-reef buttresses are deep, have large amplitudes, and are dominated by robust head corals. These characteristics are consistent with hurricane-induced pruning of branching corals and the flushing of significant quantities of sand from buttress canyons by return flows. Along margins impacted by fetch-limited storm waves, reef buttresses are shallower, have intermediate-amplitudes, and have a significantly higher proportion of branching corals. These characteristics are consistent with less coral pruning and sand flushing by weaker hurricane waves. Along margins fully protected from storm waves, the buttresses-canyon architecture of the shelf-edge reef breaks down producing a series of shallow, undulating, branching-coral-dominated ridges that merge laterally into an unbroken belt of coral. These characteristics correspond with negligible amounts of pruning and flushing during hurricanes. In addition to differences between margins, local intra-marginal changes in shelf-edge reef architecture are consistent with changes in the angle of hurricane-wave approach. Open sections of the shelf-edge reef, which face directly into storm waves, are pruned of branching corals and the fragments swept back onto the shelf producing extensive spurs. By contrast, on more sheltered, obliquely orientated sections, storm-waves sweep debris along and off shelf producing little or no spur development. Instead, the debris shed seawards accumulates in front of the buttress walls and initiates the development of coral pinnacles. Over time, repeated buttress pruning and canyon flushing during hurricanes not only controls reef architecture but may also influence accretion patterns. Vertical accretion is limited by the effective depth of storm-wave fragmentation. Once this hurricane-accretion threshold is reached the reef moves into a shedding phase and accretes laterally via pinnacle growth, amalgamation, and infilling. Consequently, the reef steps out over its own debris in a kind of balancing act between lateral growth and slope failure — a pattern widely recognized in ancient reefs.  相似文献   
96.
The Fall River Formation is a 45 m thick layer of fluvial-dominated valley-fills and shore-zone strata deposited on the stable cratonic margin of the Cretaceous Western Interior Seaway. Fall River deposits in Red Canyon, in the south-west corner of South Dakota (USA), expose a cross-section of a 3.5 km wide valley-fill sandstone and laterally adjacent marine deposits. The marine deposits comprise three 10 m thick upward-shoaling sequences; each composed of multiple metres-thick upward-coarsening successions. The lower two of these sequences are laterally cut by the valley-fill sandstone, and are capped by metres-thick muddy palaeosols. The upper sequence spans the top of the valley-fill sandstone, and is overlain by the Skull Creek Shale. The 30 m thick valley sandstone is partitioned into four distinct fills by major erosion surfaces, and each of these fills contain many metres-thick channel-form bodies. Deposits in the lower parts of these fills are sheet-like, top-truncated channel bodies, whereas deposits in the upper parts of fills are upward-concave, laterally amalgamated channel bodies, more completely preserved heterolithic channel bodies, or wave-deposited sheets. Each valley-fill basal erosion surface records an episode of valley incision and relative sea-level fall, and the gradual progression from fluvial to more estuarine deposits upwards within each fill records relative sea-level rise. All fills are dominantly channel deposits and are capped by marine flooding surfaces. The dominance of channel deposits, the gradual change to more estuarine facies in the upper parts of fills, and the location of flooding surfaces at valley-fill tops all suggest that sediment supply initially kept pace with relative sea-level rise and valleys filled during late marine lowstand and transgression, not during subsequent highstands. Recently proposed facies models have focused on variations in the relative strength of tide, wave and river currents as controls on valley-fill deposits. However, relative rates of sediment supply and basin accommodation change, and the shift in this ratio along the depositional profile during multiple-scale cycles in relative sea-level, are equally important controls on the style of valley-fill deposits.  相似文献   
97.
98.
99.
100.
ABSTRACT. Contrasting models of urban development characterize the historical-geographical evolution of Brazil's two leading cities, viewed in an updating of the seminal 1933 article by Preston James. Native to Rio de Janeiro is a distinctive Luso-Brazilian style of irregular coastal urbanization, whereas SÃo Paulo displays a more uniform, modern type of inland commercial-industrial expansion. Even as Rio de Janeiro and SÃo Paulo sprawl today to form a virtual megalopolis in southeastern Brazil, they retain distinguishing roles in the national city system. Both metropolises are experiencing increasing functional decentralization and socioeconomic polarization, but in their own characteristic fashions. Generalized models of “Latin American city structure” are of limited value, unless they take into account such significant historical-geographical variations in urban form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号