首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
地球物理   9篇
地质学   6篇
海洋学   1篇
天文学   2篇
自然地理   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2018年   2篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
排序方式: 共有19条查询结果,搜索用时 46 毫秒
11.

Recently collected naturally occurring geochemical and isotopic groundwater tracers were combined with historic data from the Pahute Mesa area of the Nevada National Security Site (NNSS), Nevada, USA, to provide insights into long-term regional groundwater flow patterns, mixing and recharge. Pahute Mesa was the site of 85 nuclear detonations between 1965 and 1992, many of them deeply buried devices that introduced radionuclides directly into groundwater. The dataset examined included major ions and field measurements, stable isotopes of hydrogen (δ2H), oxygen (δ18O), carbon (δ13C) and sulfur (δ34S), and radioisotopes of carbon (14C) and chloride (36Cl). Analysis of the patterns of groundwater 14C data and the δ2H and δ18O signatures indicates that groundwater recharge is predominantly of Pleistocene age, except for a few localized areas near major ephemeral drainages. Steep gradients in sulfate (SO4) and chloride (Cl) define a region near the western edge of the NNSS where high-concentration groundwater flowing south from north of the NNSS merges with dilute groundwater flowing west from eastern Pahute Mesa in a mixing zone that coincides with a groundwater trough associated with major faults. The 36Cl/Cl and δ34S data suggest that the source of the high Cl and SO4 in the groundwater was a now-dry, pluvial-age playa lake north of the NNSS. Patterns of groundwater flow indicated by the combined data sets show that groundwater is flowing around the northwest margin of the now extinct Timber Mountain Caldera Complex toward regional discharge areas in Oasis Valley.

  相似文献   
12.
Groundwater is not a sustainable resource, unless abstraction is balanced by recharge. Identifying the sources of recharge in a groundwater basin is critical for sustainable groundwater management. We studied the importance of river water recharge to groundwater in the south‐eastern San Joaquin Valley (24,000 km2, population 4 million). We combined dissolved noble gas concentrations, stable isotopes, tritium, and carbon‐14 analyses to analyse the sources, mechanisms, and timescales of groundwater recharge. Area‐representative groundwater sampling and numerical model input data enabled a stable isotope mass balance and quantitative estimates of river and local recharge. River recharge, identified by a lighter stable isotope signature, represents 47 ± 4% of modern groundwater in the San Joaquin Valley (recharged after 1950) but only 26 ± 4% of premodern groundwater (recharged before 1950). This implies that the importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a 40% increase in total recharge, caused by river water irrigation return flows and increased stream depletion and river recharge due to groundwater pumping. Compared with the large and long‐duration capacity for water storage in the subsurface, storage of water in rivers is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast infiltration and recharge. Groundwater banking of seasonal surface water flows and expansion of managed aquifer recharge practices therefore appear to be a natural and promising method for increasing the resilience of the San Joaquin Valley water supply system.  相似文献   
13.
In this article, the effect of reservoir length on seismic performance of gravity dams to near- and far-fault ground motions is investigated. For this purpose, four finite element models of dam–reservoir–foundation interaction system are prepared by using the Lagrangian approach. In these models, the reservoir length varies from H to 4H (H: the height of dam). The Folsom gravity dam is selected as a numerical application. Two different ground motion records of 1989 Loma Prieta earthquake are used in the analyses. One of ground motions is recorded in near fault; the other is recorded in far fault. Also, the two records have the same peak ground acceleration. The study mainly consists of three parts to assess the effects of reservoir length on the seismic performance of the concrete gravity dam. In the first part, the linear time-history analyses of the four finite element models prepared for the Folsom gravity dam are performed. In the second part, the seismic performance of the dam is evaluated according to demand–capacity ratio and cumulative inelastic duration. Finally, the nonlinear time-history analyses of the finite element models of the dam are carried out by using Drucker–Prager yield criteria for dam concrete. It is seen from the analyses results that the seismic behavior of the concrete gravity dams is considerably affected from the length of the reservoir. The reservoir length of 3H is adequate for concrete gravity dams. The selection of ground motion is on of the important parts of seismic evaluation of gravity dams. Also, the frequency characteristics of the ground motion having the same peak ground acceleration affect the seismic performance of the dam. The near-fault ground motions are generally creates more stress on the dam body than far-fault ground motions. The used performance approach provides a systematic methodology for assessment of the seismic performance and necessity of nonlinear analyses for dam systems.  相似文献   
14.
In this study, the effects of different chemicals that were used as dispersing agent and stabiliser on the stability and viscosity of coal–water slurries have been investigated. In the experiments, anionic type of chemicals—polyisoprene sulphonic acid soda (Dynaflow-K), a derivative of carboxylic acid (AC 1320) and naphthalenesulfonate–formaldehyde condensate (NSF)—were used as dispersing agents and the stabiliser was the sodium salt of carboxymethyl cellulose (CMC-Na). The coal sample used was a bituminous coal (thermal code no. 434) of Turkish origin, with medium volatile matter. The results of the experiments showed that polymeric anionic dispersing agents such as Dynaflow have much greater effect on the viscosity and the stability of coal water slurry.  相似文献   
15.
Potential use of lacustrine/fluvial type clays in Lake Van Basin (Turkey) as liner material is investigated by studying their chemical, mineralogical and technological properties. The results show dominant clay minerals being Ca-smectite along with illite, swelling chlorite, and chlorite. Na-smectite, palygorskite, and kaolin group minerals with lesser quantities are also determined in some samples. Cation exchange capacities of samples are between 12 and 23?meq/100?g; plasticity index is between 13 and 39%; calculated hydraulic conductivity is between 2.7?×?10?9 and 4.5?×?10?11; volumetric swelling capacity is between 6 and 10%. It is concluded that clays in the basin have suitable properties to be used as liner materials, with some localities having better clays as liner materials than the others. The results also indicate economical potential of fluvial/lacustrine clays and highlight their important role in sustainable development of environmentally sensitive areas, among them the Lake Van Basin itself.  相似文献   
16.
Understanding anthropogenic impacts on water storage and water flow pathways in catchments is an ongoing challenge in hydrology. Here, we study the dynamics of subsurface storage and residence time of water in a catchment in Berkeley, California, that is within a regional park but contains diverse land use within its perimeter, including a periodically irrigated golf course. Our study combines several isotopic tracers with water budget data to examine sources of water in a stream draining the site. Irrigation water, applied to a small area of the watershed, is a minor component of the water budget. However, geochemical tracers reveal that irrigation water is a significant fraction of stream flow downstream of the golf course during baseflow and during precipitation events. Isotopic tracers indicate that the watershed has a preference to release young water for stream flow generation, resulting in contrasting tritium ages for stream water and groundwater of 1.3 ± 0.5 year and 8.2 ± 1.7 year, respectively. We determined that the older water is a very small component (0.7%) of the stream water in the tail of an assumed exponential distribution. We used the seasonal variation of stable water isotopes in precipitation and stream water over two water years to explain the damping of the isotopic signature of stream water, which yields information about the catchment's response to the input signal. The methods described here may be applicable to other urban or suburban headwater catchments in areas with a component of non-natural recharge from, for example, leaky infrastructure, storm water routing or dry season irrigation.  相似文献   
17.
In this paper, stochastic dynamic responses of dam–reservoir–foundation systems subjected to spatially varying earthquake ground motions are investigated using the displacement-based fluid finite elements. For this purpose, variable-number-node two-dimensional (2D) fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a computer program SVEM, which is used for stochastic dynamic analysis of solid systems subjected to spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes incoherence, wave-passage and site-response effects. The incoherence effect is examined by considering the Harichandran and Vanmarcke coherency model. The effect of the wave passage is investigated by using various wave velocities. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. The Sar?yar concrete gravity dam, constructed in Turkey is selected for numerical example. The ground motion is described by filtered white noise and applied to each support point of the 2D finite element model of the dam–reservoir–foundation system. The record of Kocaeli earthquake in 1999 is used in the analyses. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for four cases. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic dynamic response of dam–reservoir–foundation systems.  相似文献   
18.
The Cappadocia region, located in Central Turkey, is characterized by widespread lava flows and volcanoclastic deposits dating from Miocene to Quaternary. Gravity and aeromagnetic anomalies of the region appear to present similar high and low amplitude regions, although the aeromagnetic anomalies exhibit a rather complex pattern which is thought to be caused by remanent magnetization. The low-pass filtered aeromagnetic map shows a deep-seated magnetic anomaly which may be linked to the widespread volcanic activity at the surface. The pseudogravity transformation of the upward continued anomaly has been constructed. The pseudogravity anomaly demonstrates some form of clockwise rotation. This anomaly was modelled by means of a three-dimensional method. The top and bottom of the body are at 6.3km and 11km (including the flight height) from the ground surface, respectively. This deep body is ellipsoidal and extends along an E-W direction, which is in line with the regional stress direction deduced from GPS measurements. A new mobilistic dynamo-tectonic system appears to explain the body’s E-W elongation. The modelled body may be the source for the inferred geothermal energy of the region. Magnetic measurements were carried out on oriented rock samples collected from outcrops of ignimbrites and basalts, providing directions and intensities of remanent magnetization, susceptibilities and Koeningsberger (Q) ratios. Standard deviations of remanent directions of the Natural Remanent Magnetization (NRM) display a wide scatter implying unreliability of the surface data. Reduction to pole (RTP) transformation of magnetic anomalies was successful with the induced magnetization angle despite the complex pattern of magnetic anomalies.  相似文献   
19.
The role of geoenvironmental information is becoming increasingly important as legislative changes have forced developers and planning authorities to consider more implications and impact on the environment of large-scale development initiatives. Therefore, integration of surface and subsurface geoscientific information for development needs has prime importance and provides a means of identifying potential problems and opportunities at an early stage in any planned development. However, from the experience of recent natural disasters, it is evident that this was not case the taken into consideration in many countries. In addition to thousands of casualties, many urbanized areas, industrial districts and large-scale engineering structures suffered severe damages from the natural hazards due to many reasons including the lack of preliminary engineering geological maps and zoning maps of the settlement areas. Turkey is one of the countries which is exposed to natural hazards such as earthquakes, landslides and floods. In particular, the devastating 1999 Kocaeli earthquake, which affected the Marmara Region of Turkey, focused the attention on densely urbanized and industrialized metropolitan areas such as Istanbul. The rapid growth of Istanbul, particularly towards west with minimal geoscientific information resulted in an overwhelming pressure on the natural environment. In addition, a large earthquake, which is expected to occur in the Marmara Sea within the next 30 years, also pose a threat to the city and its surroundings. In this study, on the basis of the geological, geomorphological and geophysical reconnaissance study, an integrated geoscientific data were collected from the western region of Istanbul and evaluated for geohazards. The paper focuses on the geological and geomorphological aspects that control the occurrence of some geohazards such as earthquake-induced liquefaction, landslides and flooding. In this context, the geological map of the region was revised and Quaternary deposits were classified into 11 units, in detail. Liquefaction-prone areas were evaluated by using geomorphological criteria based on field investigation, by the examination of the available records from 88 boreholes drilled on recent deposits and by the data from resistivity profiles. The landslides within the region were classified according to their type, relative depth and activity. In addition, fluvial and marine flood-prone areas were also delimited within the region. Finally, a series of maps such as landslide inventory maps, and maps showing liquefaction- and flood-prone areas were produced with the aid of Geographic Information Systems (GIS) to assist in designing further detailed site investigations and to reduce costs by ensuring a more focused approach to strategic planning and site selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号