首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   8篇
测绘学   2篇
大气科学   12篇
地球物理   46篇
地质学   108篇
海洋学   18篇
天文学   49篇
综合类   1篇
自然地理   12篇
  2024年   5篇
  2023年   3篇
  2022年   1篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   9篇
  2017年   12篇
  2016年   5篇
  2015年   9篇
  2014年   7篇
  2013年   22篇
  2012年   7篇
  2011年   10篇
  2010年   19篇
  2009年   12篇
  2008年   13篇
  2007年   11篇
  2006年   11篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1977年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1959年   1篇
  1954年   2篇
  1950年   1篇
  1915年   1篇
  1889年   1篇
  1877年   8篇
  1875年   7篇
  1872年   1篇
排序方式: 共有248条查询结果,搜索用时 15 毫秒
131.
Remediation of the Thala Valley waste disposal site near Casey Station, East Antarctica was conducted in the austral summer of 2003/2004. Biomonitoring of the adjacent marine environment was undertaken using the gammaridean amphipod Paramoera walkeri as a sentinel species [Stark, J.S., Johnstone, G.J., Palmer, A.S., Snape, I., Larner, B.L., Riddle, M.J., in press, . Monitoring the remediation of a near shore waste disposal site in Antarctica using the amphipod Paramoera walkeri and diffusive gradients in thin films (DGTs). Marine Pollution Bulletin and references therein]. Determination of uptake of metals and hypothesis testing for differences that could be attributed to contamination required the establishment of baseline metal concentrations in P. walkeri. Baseline metal concentrations from two reference locations in the Windmill Islands are presented here. P. walkeri was a found to be a sensitive bioaccumulating organism that recorded spatial and temporal variability at the reference sites. Measurement of metals in P. walkeri required the development of a simple digestion procedure that used concentrated nitric acid. For the first time, rare earth metals were determined with additional clean procedures required to measure ultra low concentrations using magnetic sector ICP-MS. Certified and in-house reference materials were employed to ensure method reliability.  相似文献   
132.
The Atlantic Warm Pool (AWP) region, which is comprised of the Gulf of Mexico, Caribbean Sea and parts of the northwestern tropical Atlantic Ocean, is one of the most poorly observed parts of the global oceans. This study compares three ocean reanalyses, namely the Global Ocean Data Assimilation System of National Centers for Environmental Prediction (NCEP), the Climate Forecast System Reanalysis (CFSR) of NCEP, and the Simple Ocean Data Assimilation (SODA) for its AWP variation. The surface temperature in these ocean reanalyses is also compared with that from the Extended Range SST version 3 and Optimally Interpolated SST version 2 SST analyses. In addition we also compare three atmospheric reanalyses: NCEP-NCAR (R1), NCEP-DOE (R2), and CFSR for the associated atmospheric variability with the AWP. The comparison shows that there are important differences in the climatology of the AWP and its interannual variations. There are considerable differences in the subsurface ocean manifestation of the AWP with SODA (CFSR) showing the least (largest) modulation of the subsurface ocean temperatures. The remote teleconnections with the tropical Indian Ocean are also different across the reanalyses. However, all three oceanic reanalyses consistently show the absence of any teleconnection with the eastern equatorial Pacific Ocean. The influence of the AWP on the tropospheric temperature anomalies last for up to a one season lead and it is found to be relatively weak in R1 reanalyses. A simplified SST anomaly equation initially derived for diagnosing El Niño Southern Oscillation variability is adapted for the AWP variations in this study. The analysis of this equation reveals that the main contribution of the SST variation in the AWP region is from the variability of the net heat flux. All three reanalyses consistently show that the role of the ocean advective terms, including that associated with upwelling in the AWP region, is comparatively much smaller. The covariance of the SST tendency in the AWP with the net heat flux is large, with significant contributions from the variations of the surface shortwave and longwave fluxes.  相似文献   
133.
134.
A small (3 75 km2) impoundment. Union Lake, on the Maurice River in southern New Jersey contains fine-grained sediment and organic material being transported through the surface water system Sedimentation is slow and rates calculated from137Cs-dated cores indicate a decrease through time from 2 6 mm/yr to 0 57 mm/yr Sediment from shallow areas (<3 m) consists of winnowed preimpoundment fluvial sand, whereas sediment from deeper areas (>3 m) is dy composed of diatoms, organic matter, and silt- and clay-sized mineral grains Sediment distribution is controlled by water moving from the river entrance southward toward the outlet and by wind-generated water motion from shallow areas fringing the shore toward deeper portions of the impoundment  相似文献   
135.
Cold‐based polar glacier watersheds contain well‐defined supraglacial, ice‐marginal, and proglacial elements that differ in their degree of hydrologic connectivity, sources of water (e.g., snow, ice, and/or sediment pore water), meltwater residence times, allochthonous and autochthonous nutrient, and sediment loads. We investigated 11 distinct hydrological units along the supraglacial, ice marginal, and proglacial flow paths that drain Joyce Glacier in the McMurdo Dry Valleys of Antarctica. We found that these units play unique and important roles as sources and/or sinks for dissolved inorganic nitrogen and dissolved inorganic phosphorus and for specific fractions of dissolved organic matter (DOM) as waters are routed from the glacier into nutrient‐poor downstream ecosystems. Changes in nutrient export from the glacial system as a whole were observed as the routing and residence times of meltwater changed throughout the melt season. The concentrations of major ions in the proglacial stream were inversely proportional to discharge, such that there was a relatively constant “trickle” of these solutes into downstream ecosystems. In contrast, NO3? concentrations generally increased with discharge, resulting in delivery of episodic pulses of dissolved inorganic nitrogen‐rich water (“treats”) into those same ecosystems during high discharge events. DOM concentrations or fluorescence did not correlate with discharge rate, but high variability in DOM concentrations or fluorescence suggests that DOM may be exported downstream as episodic treats, but with spatial and/or temporal patterns that remain poorly understood. The strong, nutrient‐specific responses to changes in hydrology suggest that polar glacier drainage systems may export meltwater with nutrient compositions that vary within and between melt seasons and watersheds. Because nutrient dynamics identified in this study differ between glacier watersheds with broadly similar hydrology, climate, and geology, we emphasize the need to develop conceptual models of nutrient export that thoroughly integrate the biogeochemical and hydrological processes that control the sources, fate, and export of nutrients from each system.  相似文献   
136.
Plants require solar radiation for photosynthesis and their growth is directly related to the amount received, assuming that other environmental parameters are not limiting. Therefore, precise estimation of photosynthetically active radiation (PAR) is necessary to enhance overall accuracies of plant growth models. This study aimed to explore the PAR radiant flux in the San Francisco Bay Area of northern California. During the growing season (March through August) for 2?years 2007?C2008, the on-site magnitudes of photosynthetic photon flux densities (PPFD) were investigated and then processed at both the hourly and daily time scales. Combined with global solar radiation (R S) and simulated extraterrestrial solar radiation, five PAR-related values were developed, i.e., flux density-based PAR (PPFD), energy-based PAR (PARE), from-flux-to-energy conversion efficiency (fFEC), and the fraction of PAR energy in the global solar radiation (fE), and a new developed indicator??lost PARE percentages (LPR)??when solar radiation penetrates from the extraterrestrial system to the ground. These PAR-related values indicated significant diurnal variation, high values occurring at midday, with the low values occurring in the morning and afternoon hours. During the entire experimental season, the overall mean hourly value of fFEC was found to be 2.17???mol?J?1, while the respective fE value was 0.49. The monthly averages of hourly fFEC and fE at the solar noon time ranged from 2.15 in March to 2.39???mol?J?1 in August and from 0.47 in March to 0.52 in July, respectively. However, the monthly average daily values were relatively constant, and they exhibited a weak seasonal variation, ranging from 2.02?mol?MJ?1 and 0.45 (March) to 2.19?mol?MJ?1 and 0.48 (June). The mean daily values of fFEC and fE at the solar noon were 2.16?mol?MJ?1 and 0.47 across the entire growing season, respectively. Both PPFD and the ever first reported LPR showed strong diurnal patterns. However, they had opposite trends. PPFD was high around noon, resulting in low values of LPR during the same time period. Both were found to be highly correlated with global solar radiation R S, solar elevation angle h, and the clearness index K t. Using the best subset selection of variables, two parametric models were developed for estimating PPFD and LPR, which can easily be applied in radiometric sites, by recording only global solar radiation measurements. These two models were found to be involved with the most commonly measured global solar radiation (R S) and two large-scale geometric parameters, i.e., extraterrestrial solar radiation and solar elevation. The models were therefore insensitive to local weather conditions such as temperature. In particular, with two test data sets collected in USA and Greece, it was verified that the models could be extended across different geographical areas, where they performed well. Therefore, these two hourly based models can be used to provide precise PAR-related values, such as those required for developing precise vegetation growth models.  相似文献   
137.
Tens of millions of people around the world are already exposed to coastal flooding from tropical cyclones. Global warming has the potential to increase hurricane flooding, both by hurricane intensification and by sea level rise. In this paper, the impact of hurricane intensification and sea level rise are evaluated using hydrodynamic surge models and by considering the future climate projections of the Intergovernmental Panel on Climate Change. For the Corpus Christi, Texas, United States study region, mean projections indicate hurricane flood elevation (meteorologically generated storm surge plus sea level rise) will, on average, rise by 0.3 m by the 2030s and by 0.8 m by the 2080s. For catastrophic-type hurricane surge events, flood elevations are projected to rise by as much as 0.5 m and 1.8 m by the 2030s and 2080s, respectively.  相似文献   
138.
In shallow photic systems, the benthic filter, including microphytobenthos and denitrifiers, is important in preventing or reducing release of remineralized NH4 + to the water column. Its effectiveness can be impacted by climate-related drivers, including temperature and storminess, which by increasing wind and freshwater delivery can resuspend sediment, reduce salinity and deliver nutrients, total suspended solids, and chromophoric dissolved organic matter (CDOM) to coastal systems. Increases in temperature and freshwater delivery may initiate a cascade of responses affecting benthic metabolism with impacts on sediment properties, which in turn regulate nitrogen cycling processes that either sequester (via microphytobenthos), remove (via denitrification), or increase sediment nitrogen (via remineralization, nitrogen fixation, and dissimilatory nitrate reduction to ammonium). We conducted a seasonal study at shallow stations to assess the effects of freshwater inflow, temperature, wind, light, and CDOM on sediment properties, benthic metabolism, nitrogen cycling processes, and the effectiveness of the benthic filter. We also conducted a depth study to constrain seasonally varying parameters such as temperature to better assess the effects of light availability and water depth on benthic processes. Based on relationships observed between climatic drivers and response variables, we predict a reduction in the effectiveness of the benthic filter over the long term with feedbacks that will increase effluxes of N to the water column with the potential to contribute to system eutrophication. This may push shallow systems past a tipping point where trophic status moves from net autotrophy toward net heterotrophy, with new baselines characterized by degraded water quality.  相似文献   
139.
Benthic oxygen, dinitrogen, and nutrient fluxes (NH4+, NO3, and PO43−) were measured monthly during a 1-year period at two locations in Weeks Bay, a shallow (1.4 m) and eutrophic estuary in Alabama. Gross primary productivity (GPP), ecosystem respiration (R), and net ecosystem metabolism were determined from high-frequency dissolved oxygen measurements. Peak water column NO3 (55 μM) and chlorophyll a (138 μg/l) concentrations were measured during spring and fall, respectively. Sediments were a net source of NH4+ (102 μmol m−2 h−1) and PO43− (0.9 μmol m−2 h−1) but a sink for NO3 (−30 μmol m−2 h−1). Benthic N2 fluxes indicated net N fixation (12 μmol N m−2 h−1). Sediment oxygen demand (0.55 g O2 m−2 day−1) accounted for <10% of R (7.3 g O2 m−2 day−1). Despite high GPP rates (4.7 g O2 m−2 day−1), the estuary was net heterotrophic. Benthic regeneration supplied, on average, 7.5% and 4% of primary productivity N and P demands, respectively. These results contrast with the conventional view that benthic regeneration accounts for a large fraction of phytoplankton nutrient demand in shallow estuaries.  相似文献   
140.
Vein-hosted mesothermal stibnite-gold mineralisation at the Hillgrove Au-Sb mine in northeastern New South Wales has a halo of veinlet and disseminated auriferous arsenopyrite and arsenian pyrite in metasedimentary and granitic host rocks. About 50–55% of the gold produced at Hillgrove occurs invisibly in arsenopyrite and pyrite. Gold losses of ∼20% into tailings are due to this mineral chemical factor. From PIXE probe analyses, it has been found that arsenopyrite contains 255–1500 ppm Au and pyrite 24–223 ppm Au, with Au contents of each mineral correlating moderately with As content. Arsenopyrite and pyrite also contain anomalous values of Cu, Ag and Sb, whereas paragenetically later stibnite contains little invisible gold, but minor Fe, As, Ag, Cu and Pb. The precipitation of invisible gold in arsenopyrite and pyrite by a possible (Fe, Au)3+= (As-S)3− substitution mechanism may have been facilitated by rapid, non-equilibrium conditions involving pressure decreases and wall rock reaction (sulphidation, carbonatisation), as a prelude to the main stage of stibnite and gold deposition. Received: 15 January 1999 / Accepted: 12 October 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号