首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   16篇
  国内免费   20篇
测绘学   15篇
大气科学   40篇
地球物理   123篇
地质学   192篇
海洋学   78篇
天文学   68篇
综合类   4篇
自然地理   54篇
  2019年   5篇
  2018年   6篇
  2017年   12篇
  2016年   5篇
  2015年   16篇
  2014年   22篇
  2013年   23篇
  2012年   21篇
  2011年   23篇
  2010年   25篇
  2009年   17篇
  2008年   25篇
  2007年   18篇
  2006年   16篇
  2005年   9篇
  2004年   12篇
  2003年   7篇
  2002年   7篇
  2001年   8篇
  2000年   7篇
  1999年   11篇
  1998年   8篇
  1997年   9篇
  1995年   8篇
  1994年   7篇
  1993年   10篇
  1992年   6篇
  1990年   7篇
  1989年   10篇
  1988年   11篇
  1987年   9篇
  1985年   15篇
  1984年   14篇
  1983年   13篇
  1982年   7篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1977年   8篇
  1976年   7篇
  1974年   4篇
  1973年   7篇
  1972年   5篇
  1969年   4篇
  1934年   4篇
  1930年   4篇
  1929年   4篇
  1921年   4篇
  1920年   4篇
  1918年   4篇
排序方式: 共有574条查询结果,搜索用时 250 毫秒
411.
A high-resolution chronology for Peoria (last glacial period) Loess from three sites in Nebraska, midcontinental North America, is determined by applying optically stimulated luminescence (OSL) dating to 35–50 μm quartz. At Bignell Hill, Nebraska, an OSL age of 25,000 yr near the contact of Peoria Loess with the underlying Gilman Canyon Formation shows that dust accumulation occurred early during the last glacial maximum (LGM), whereas at Devil’s Den and Eustis, Nebraska, basal OSL ages are significantly younger (18,000 and 21,000 yr, respectively). At all three localities, dust accumulation ended at some time after 14,000 yr ago. Mass accumulation rates (MARs) for western Nebraska, calculated using the OSL ages, are extremely high from 18,000 to 14,000 yr—much higher than those calculated for any other pre-Holocene location worldwide. These unprecedented MARs coincide with the timing of a mismatch between paleoenvironmental evidence from central North America, and the paleoclimate simulations from atmospheric global circulation models (AGCMs). We infer that the high atmospheric dust loading implied by these MARs may have played an important role, through radiative forcing, in maintaining a colder-than-present climate over central North America for several thousand years after summer insolation exceeded present-day values.  相似文献   
412.
Single-crystal X-ray and neutron structure refinements carried out on neptunite (KNa2Li(Fe, Mg, Mn)2Ti2Si8O24) from San Benito, California at various temperatures (neutrons: 15 K and 293 K; X-rays: 110 K, 293 K and 493 K) indicate that this mineral crystallizes in the acentric space group Cc (T=293K: a=16.427 Å, b=12.478 Å, c=9.975 Å, = 115.56°, Z=4, V=1844.53 Å3) due to ordering of octahedrally coordinated metals (Ti, Fe, Mn, Mg). In the neptunite structure, Ti and (Fe, Mn, Mg) octahedra share edges to form chains that run along [110] and [110]. These chains are, in turn, linked through shared corners along [001]. The resulting octahedral framework is interwoven by a similar [Si8O22] tetrahedral framework. Li, Na and K occupy 6-, 8- and 10- coordinated sites within the framework. The metal-containing polyhedra show strong distortions at all temperatures. In particular, Ti exhibits a strong off-center displacement (0.25 Å) within its octahedron, leading to four Ti-O distances of 2.0 Å, one of 2.2 Å and one of 1.7 Å. The displaced Ti position is in good agreement with a position that minimizes differences between ionic bond strengths and is interpreted as an energy minimum in an ionic potential model. Mössbauer spectra collected at 77 K, 293 K and 400 K indicate all Fe to be present as octahedral Fe2+. Although two distinct Fe positions were found in the structure, 77 K and 293 K spectra display only one quadrupole doublet. Two Fe sites can only be resolved in the 400 K spectrum. It is suggested that the temperature dependence of octahedral edge distortions is responsible for the separation of the Mössbauer doublets.  相似文献   
413.
Arthur N. Cox 《Solar physics》1990,128(1):123-131
We consider the rotation independent (m = 0) frequencies of Hill and Gu (1988) and Henning and Scherrer (1988). Comparison with Cox, Guzik, and Kidman (CGK) frequencies shows that CGK are systematically 5.7 ± 0.7% larger. This effect may be due to the larger central density in this model (162 g cm–3) compared to the real Sun. A known systematic error of about one percent in the pressure calculated by the Iben (1965) procedure can account for the higher CGK central helium and density. A check of this increase of g-mode frequency with central density is made by calculating g-mode frequencies for a WIMP model with a central density of 210 g cm–3. This 30% density increase gives a 17% frequency increase, and implies a law with frequency increasing with the 17/30 power of the central density. Thus the 5.7% decrease of frequencies from the model to the real Sun indicates a central density decrease of about 9.7% to about 147 g cm–3. Comparison with the recent van der Raay g-mode frequencies shows that the CGK model frequencies are about 14% larger, as one would expect for these observed frequencies with a large P 0 of 41.2 min.Destabilizing mechanisms of the normal -effect at the top of the convection zone and convection blocking at the bottom of the convection zone for low order and low-l g-modes produces pulsation driving that does not seem to be damped by radiation and convection effects at the surface. Since the surface motions are very small, photospheric damping does not stabilize these modes at it does for the 5-min p-modes. For higher-order and degree modes, deep damping by radiation flow across nodes overwhelms the destabilization and any small effect.  相似文献   
414.
415.
416.
417.
We describe the development and preliminary application of the inverse Regional Ocean Modeling System (ROMS), a four dimensional variational (4DVAR) data assimilation system for high-resolution basin-wide and coastal oceanic flows. Inverse ROMS makes use of the recently developed perturbation tangent linear (TL), representer tangent linear (RP) and adjoint (AD) models to implement an indirect representer-based generalized inverse modeling system. This modeling framework is modular. The TL, RP and AD models are used as stand-alone sub-models within the Inverse Ocean Modeling (IOM) system described in [Chua, B.S., Bennett, A.F., 2001. An inverse ocean modeling system. Ocean Modell. 3, 137–165.]. The system allows the assimilation of a wide range of observation types and uses an iterative algorithm to solve nonlinear assimilation problems. The assimilation is performed either under the perfect model assumption (strong constraint) or by also allowing for errors in the model dynamics (weak constraints). For the weak constraint case the TL and RP models are modified to include additional forcing terms on the right hand side of the model equations. These terms are needed to account for errors in the model dynamics.Inverse ROMS is tested in a realistic 3D baroclinic upwelling system with complex bottom topography, characterized by strong mesoscale eddy variability. We assimilate synthetic data for upper ocean (0–450 m) temperatures and currents over a period of 10 days using both a high resolution and a spatially and temporally aliased sampling array. During the assimilation period the flow field undergoes substantial changes from the initial state. This allows the inverse solution to extract the dynamically active information from the synthetic observations and improve the trajectory of the model state beyond the assimilation window. Both the strong and weak constraint assimilation experiments show forecast skill greater than persistence and climatology during the 10–20 days after the last observation is assimilated.Further investigation in the functional form of the model error covariance and in the use of the representer tangent linear model may lead to improvement in the forecast skill.  相似文献   
418.
419.
420.
New petrographic and major element geochemical data from modern Peru margin upper slope-outer shelf phosphorites are presented, which provide insight into their origin and paragenetic relationship with other authigenic minerals (glauconite, pyrite and dolomite) occurring in organic-rich sediments. Glauconites are precipitated relatively early following the partial reduction of ferric iron and, following this process, phosphate, pyrite, and then dolomite precipitation take place at progressively deeper levels in the sediment in association with microbial reduction of sulfate. As in many ancient economic phosphorite deposits, the phosphatic facies here consist of nodules, crusts, coatings and strata composed of phosphatic pelletal grains (ooids, structureless grains, intraclasts, clumps and biogenic grains) in association with organic-rich biosiliceous sediments. All are considered to have formed within a few centimeters or within a few tens of centimeters below the sediment-water interface. Important factors that influence which morphology will tend to develop include the amount of available pore space, the presence of suitable nucleation sites, the amount and size of siliciclastic detritus incorporated as inclusions and the relative solution chemistries of the precipitating solutions. Bacterial mediation may play an important, but as yet unspecified role in the precipitation process. Textural data and factor analysis of chemical data suggest that structureless pellets are relatively inclusion-free Na-F-Mg-CO3-substituted pore-water precipitates whereas ooids are inclusion-rich pore-water precipitates poor in lattice-substituted components. Variations in nodular cement birefringence and crystallinity are suggested to have been produced by similar lattice substitutions that directly reflect pore-water carbonate ion concentrations and thus relative degrees of organic-matter degradation. Phosphate and dolomite are intimately mixed, yet mineralogically distinct phases in phosphatized dolomicrites.

Depth-stratified threshold carbonate ion concentrations may control the lower limit at which phosphatic minerals may precipitate. Below depths of a few centimeters, excessive carbonate ion concentrations and diminished reactive iron and sulfate concentrations favor the development of dolomite while precluding further development of phosphatic minerals and pyrite. Periodic sediment reorganization (bioturbation, current winnowing and erosion, mass wasting, etc.) plays an important role in both concentrating pelletal grains and maintaining nodules and crusts at critical depth levels in the sediment, as well as mixing ordered mineral parageneses into complicated sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号