首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   16篇
  国内免费   20篇
测绘学   15篇
大气科学   40篇
地球物理   123篇
地质学   192篇
海洋学   78篇
天文学   68篇
综合类   4篇
自然地理   54篇
  2019年   5篇
  2018年   6篇
  2017年   12篇
  2016年   5篇
  2015年   16篇
  2014年   22篇
  2013年   23篇
  2012年   21篇
  2011年   23篇
  2010年   25篇
  2009年   17篇
  2008年   25篇
  2007年   18篇
  2006年   16篇
  2005年   9篇
  2004年   12篇
  2003年   7篇
  2002年   7篇
  2001年   8篇
  2000年   7篇
  1999年   11篇
  1998年   8篇
  1997年   9篇
  1995年   8篇
  1994年   7篇
  1993年   10篇
  1992年   6篇
  1990年   7篇
  1989年   10篇
  1988年   11篇
  1987年   9篇
  1985年   15篇
  1984年   14篇
  1983年   13篇
  1982年   7篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1977年   8篇
  1976年   7篇
  1974年   4篇
  1973年   7篇
  1972年   5篇
  1969年   4篇
  1934年   4篇
  1930年   4篇
  1929年   4篇
  1921年   4篇
  1920年   4篇
  1918年   4篇
排序方式: 共有574条查询结果,搜索用时 15 毫秒
241.
242.
243.
244.
The degree of chemical instability of xanthopterin and related pteridines in seawater was studied with a view to assessing its role in the ecological turnover of these compounds in the marine environment. Solutions of these compounds in natural and synthetic seawater, brines containing one or more component salts of seawater, and buffers covering a wide pH range were incubated aseptically at 22–25°C in complete darkness and the chemical changes were spectrophotometrically monitored.Pterin, lumazine, and isoxanthopterin were completely stable in seawater, while the other pteridines degraded in the order dioxylumazine < leucopterin < xanthopterin <<< oxylumazine (the trivial names oxylumazine and dioxylumazine are used to denote 2, 4, 6-trihydroxy- and 2, 4, 6, 7-tetrahydroxy-pteridine, respectively). Apart from oxylumazine, the chemical instability of the other pteridines was correlated with pH corresponding to that of seawater. The high instability of oxylumazine was shown to be due to the salt content of seawater and not its pH; this pteridine required minimal concentrations of salt and traces of heavy-metal ions (such as Cu2+) to show significant chemical change. When the salt present was NaCl or KCl only, oxylumazine showed 1:1 oxidative conversion to dioxylumazine, but with the total salts of seawater the conversion was 2:1 with half of the oxylumazine being degraded, apparently by ring-cleavage, to unidentified non-pteridine products; this latter degradation is attributed to the total complex of ions present in seawater. In contrast to oxylumazine, xanthopterin gave evidence of 1:1 oxidative degradation via leucopterin in seawater, and this degradation appeared to be independent of trace metal ions. Chemical mechanisms are suggested for the observed degradations, and the ecological implications of the latter are discussed.  相似文献   
245.
246.
Pore water chemistry (total dissolved CO2, NH4, NO3, NO2, PO4, Si(OH)4, Ca, Mg, Fe, Mn, SO4, H2S and F, and titration alkalinity), solid phase chemistry (Corg, Porg, CTOT, NTOT, F, SiOPAL and SII), and sediment characteristics (porosity, dry bulk density and formation factors) were determined on a centimeter-scale spacing in the upper 20–40 cm of sediments under intense upwelling areas on the Peru continental shelf. These data demonstrate that carbonate fluorapatite (CFA) is precipitating from pore waters in the upper few centimeters of a gelatinous mud with high organic carbon content (up to 20% Corg), very high porosity ( > 0.96 ml cm−3) and very low dry bulk density (< 0.1 g cm−3). Dissolved phosphate concentrations at the sediment-water interface range from 20 to 100 μM, orders of magnitude higher than bottom-water concentrations, and much higher than predicted from regeneration of organic matter. The mechanism of this interfacial phosphate release is unclear, but is apparently uncoupled from carbon and nitrogen metabolism and thus may be linked either to dissolution of fish debris or to the presence of a microbial mat in surficial sediments. Fluoride is incorporated into CFA by diffusion from the overlying seawater, and carbonate ions are provided from pore-water alkalinity. Magnesium concentrations in this reaction zone are not significantly different from those of seawater, suggesting that magnesium depletion is not a necessary prerequisite for CFA precipitation.

The environment of precipitation is interface-linked rather than driven by organic diagenesis of phosphorus deeper in the sediment. Most of the cores display a wide range of diagenetic characteristics below the immediate interfacial region, but almost all show the precipitation signature near the interface. This interface-linked early diagenetic porewater environment for the precipitation of CFA explains many of the geochemical characteristics of phosphorites and provides a “testable” model to compare the modern phosphogenic analog with ancient phosphorite deposits. Two of the cores display very high solid phase phosphorus and fluoride contents reflecting the presence of apparently modern pelletal apatites.  相似文献   

247.
248.
249.
The sulfide-oxidizing symbiotic tubeworm Lamellibrachia luymesi is a dominant member of deep-sea hydrocarbon seep ecosystems on the Gulf of Mexico seafloor. This tubeworm forms large aggregations that can live for centuries and provide habitat for an assortment of associated fauna. Previous studies have suggested that persistence of these tubeworms for such long time periods is contingent upon their ability to supply sediments with sulfate. To examine this hypothesis, we characterized the tubeworm’s geochemical environment using pore water peepers and compared the measured depth profiles with those predicted by a sulfur diffusion-reaction-supply model. We found a large range of sulfide concentrations in the tubeworm habitat, indicating that this species can live under conditions of both high and low sulfide availability. In sediments rich in hydrocarbons, we found compelling evidence that tubeworms enhance microbial sulfide production, likely through a combination of sulfide uptake and sulfate release through their root-like structures buried in the sediment. Our in situ empirical data combined with the results of the geochemical model corroborate previous physiological studies that indicate that tubeworms release between 70% and 90% of the sulfate produced during sulfide oxidation by their symbionts across their roots into the surrounding sediment. In sediments low in hydrocarbon content, sulfide production is hydrocarbon-limited rather than sulfate-limited, and our model predicts that tubeworm growth could be limited by low sulfide availability.  相似文献   
250.
By computer simulations, the dynamical evolution of plane triple systems of gaseous protogalaxies and galaxies with zero initial velocities has been studied. Inside the regionD of initial configurations some subregions have been revealed corresponding to a coalescence of protogalaxies on the first double approach. The average spin momenta of mergers are approximately equal to those typical of disk galaxies. In triple galaxies, a coalescence on the first double approach does not occur. The presence of significant hidden mass makes the approaches wider and prevents the coalescence of bodies in the systems without a central object. A central pair in a group of galaxies aids to coalescence. Also the change during time of the virial coefficient has been investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号