首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   6篇
  国内免费   2篇
测绘学   1篇
大气科学   6篇
地球物理   18篇
地质学   34篇
海洋学   5篇
天文学   6篇
自然地理   16篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1956年   1篇
排序方式: 共有86条查询结果,搜索用时 869 毫秒
11.
Arsenotrophic bacteria contribute to the nutrient cycling in arsenic (As) affected groundwater. This study employed a culture‐independent and ‐dependent investigation of arsenotrophic microbiomes in As affected groundwater samples collected from Madhabpur, Sonatengra, and Union Porishod in Singair Upazila, Manikganj, Bangladesh. Total As contents, detected by Atomic Absorption Spectrophotometry (AAS) of the samples, were 47 µg/L (Madhabpur, SNGW‐1), 53 µg/L (Sonatengra, SNGW‐2), and 12 µg/L (Union porishod, SNGW‐3), whereas the control well (SNGW‐4; depths >150 m) showed As content of 6 µg/L. Denaturing Gradient Gel Electrophoresis (DGGE) analysis of the amplified 16S rRNA gene from As‐affected groundwater samples revealed the dominance of aerobic bacteria Pseudomonas within heterogeneous bacterial populations. DGGE of heterotrophic enrichments supplemented with arsenite [As (III)] for 4 weeks showed the dominance of Chryseobacterium, Flavobacterium, and Aquabacterium, whereas the dominant genera in that of autotrophic enrichments were Aeromonas, Acinetobacter, and Pseudomonas. Cultured bacteria retrieved from both autotrophic and heterotrophic enrichments were distinguished into nine genotypes belonging to Chryseobacterium, Acinetobacter, Escherichia, Pseudomonas, Stenotrophomonas, Janibacter, Staphylococcus, and Bacillus. They exhibited varying range of As(III) tolerance from 4 to 27 mM. As(III) transformation potential was confirmed within the isolates with oxidation rate as high as 0.143 mM/h for Pseudomonas sp. Sn 28. The arsenotrophic microbiome specifies their potential role in groundwater As‐cycling and their genetic information provide the scientific basis for As‐bioremediation.  相似文献   
12.
为探究绿洲城市道路积尘重金属污染风险,在新疆库尔勒市采集54个代表性道路积尘样品,分析其中Hg、Cd、As、Pb、Cr和Cu等6种元素含量,基于GIS技术与地学统计法,采用污染负荷指数法和US EPA健康风险评价模型,对道路积尘中重金属污染及潜在健康风险进行评价。结果表明:库尔勒市道路积尘中Hg、Cd、As、Pb和Cu等元素含量的平均值均小于土壤环境质量—建设用地土壤污染风险管控标准(GB 36600—2018)中的筛选值,但Cr元素含量平均值为相应筛选值的9.90倍。污染评价结果表明,研究区道路积尘中Cr呈现重度污染,Hg、Cd、As、Pb和Cu呈无污染。道路积尘中重金属元素的污染负荷指数介于0.0142~0.0522,平均值为0.0266,处于无污染水平。从道路积尘重金属污染空间分布格局来看,库尔勒市东北部和北部区域出现污染高值区。健康风险评估结果表明,经手-口摄入途径是库尔勒市道路积尘重金属日均暴露量及健康风险的主要途径,儿童受到的健康风险高于成人。库尔勒市道路积尘中Hg、Cd、As、Pb、Cr与Cu等元素的非致癌风险及致癌风险处于安全范围内,As对非致癌风险的贡献最大,Cr对致癌风险的贡献最大。  相似文献   
13.
Water Resources - The objective of this study was to compare and assess the quality and study the hydrochemistry of groundwater in the Al-Baha and Al-Qassim areas, representing the Arabian Shield...  相似文献   
14.
为了进一步了解吉尔吉斯斯坦两栖爬行动物物种多样性特征,于2012年9月15日~26日,在对吉尔吉斯斯坦西南部不同生境两栖爬行动物物种多样性进行野外实地调查和已有文献整理的基础上,初步整理出了分布在吉尔吉斯斯坦西南部的两栖爬行动物种类,并其物种多样性进行比较分析。本次考察共采集和记录实体标本621号,经鉴定共26种(亚种),分隶4目10科18属,其中两栖纲1目2科2属2种,爬行纲3目8科16属22种。其中新疆蟾蜍(Bufo pewzowi)、亚洲林蛙(Rana asiatica)、赛氏沙蜥(Phrynocephalus saidalievi)三个种为优势种类,占总个体数的55.23%;快步麻蜥(Eremias velox)、喜山岩蜥(Laudakia himalayana)、草原蜥(Trapelus agilis)、荒漠无脸蜥(Ablepharus deserti)、施氏石龙子(Eumeces schneideri)、叶城麻蜥(Eremias yarkandensis)、棋斑游蛇(Natrix tessellata)、白条锦蛇(Elaphe dione)、中亚眼镜蛇(Naja oxiana)、四爪陆龟指名亚种(Testudo horsfieldii horsfieldii)11种类为常见种,占总个体数的36.88%;新疆岩蜥(Laudakia stoliczkana)、敏麻蜥(Eremias arguta)、捷蜥蜴(Lacerta agilis)、红沙蠎(Eryx miliaris)、东方沙蠎(Eryx tataricus)、草原蝰(Vipera renardi)等12各种为稀有种类,占总个体数的7.89%。在不同生境间均存在物种多样性指标差异显著(p<0.05),物种多样性在草原最高(2.029 8),其次为山地森林(1.920 4),而荒漠最低(0.233 8);丰富度均在山地森林最高(3.242 51),其次为草原(2.540 0),而在荒漠最低(0.288 5);由于吉尔吉斯斯坦西南部的气候属于典型的大陆性气候,两栖爬行动物物种的组成主要以适应干旱环境的耐旱种类为主,区系组成较为简单,地方种类数量较少,在物种组成及起源等方面与我国西北地区的两栖爬行动物区系有着一定的联系。  相似文献   
15.
Biosorption using activated sludge biomass (ASB) as a potentially sustainable technology for the treatment of wastewater containing different metal ions (Cd(II), Pb(II) and Zn(II)) was investigated. ASB metal uptake clearly competed with protons consumed by microbial biomass compared with control tests with non‐activated sludge biomass. Biosorption tests confirmed maximum exchange between metal ions and protons at pH 2.0–4.5. It was revealed by the study that the amount of metal ions released from the biomass increased with biomass sludge concentration. The result showed that maximum absorption of metal ions was observed for Cd(II) at pH 3.5, Pb(II) at pH 4.0, and pH 4.5 for Zn(II) ions. The maximum absorption capacities of ASB for Cd(II), Pb(II) and Zn(II) were determined to be 59.3, 68.5 and 86.5%, respectively. The biosorption of heavy metals was directly proportional to ASB stabilization corresponding to a reduction in heavy metals in the order of Cd < Pb < Zn. The order of increase of biosorption of metal ions in ASB was Zn(II) < Pb(II) < Cd(II), and this was opposite to that of non active sludge. The results indicate that ASB is a sustainable tools for the bioremediation of Cd(II), Pb(II) and Zn(II) ions from industrial sludge and wastewater treatment plants.  相似文献   
16.
17.
Theoretical and Applied Climatology - Analysis of climatic variables is important for the detection and attribution of climate change trends and has received considerable attention from researchers...  相似文献   
18.
The transport and leaching potential hazards of various pesticides were studied in a shallow unconfined aquifer located in Northwest Bangladesh. Pesticide leaching potential was quantified using a one-dimensional advective–dispersive transport equation for a non-conservative chemical that follows first-order decay and linear adsorption in soils. Leaching potential index (LPI) was calculated for 69 sites in the study area to evaluate the relative vulnerability to pesticide leaching and to prioritize sites for model study and soil sampling. The numerical ranks of computed LPI were grouped by quantiles into very high, high, moderate, low and very low categories; and based on these rankings, the most vulnerable site was selected. The fate and transport of pesticides in this most vulnerable site was modeled using MT3D. The model results indicate that pesticides with high sorptivity and moderate to high persistence have low potential impact on groundwater. Top soils are found to be particularly vulnerable to the accumulation of organochlorine pesticides. Results also revealed that decreasing the soil organic matter and increasing the half-life of the pesticides at deeper depths did not make any significant change. Finally, six soil samples were collected from the same site at depths of 0.0, 1.5, 3.0, 4.5, 6.0, and 7.5 m for the analysis of pesticide residues. The soil–water was extracted from the samples following standard extraction technique and tested using gas chromatography (GC) and high-performance liquid chromatography (HPLC) for pesticide residues. Results showed no trace of pesticide residues in the soil–water; however, a few unknown peaks were detected indicating the use of some unknown brand of chemicals in the study area.  相似文献   
19.
Flow and transport simulation in karst aquifers remains a significant challenge for the ground water modeling community. Darcy's law–based models cannot simulate the inertial flows characteristic of many karst aquifers. Eddies in these flows can strongly affect solute transport. The simple two-region conduit/matrix paradigm is inadequate for many purposes because it considers only a capacitance rather than a physical domain. Relatively new lattice Boltzmann methods (LBMs) are capable of solving inertial flows and associated solute transport in geometrically complex domains involving karst conduits and heterogeneous matrix rock. LBMs for flow and transport in heterogeneous porous media, which are needed to make the models applicable to large-scale problems, are still under development. Here we explore aspects of these future LBMs, present simple examples illustrating some of the processes that can be simulated, and compare the results with available analytical solutions. Simulations are contrived to mimic simple capacitance-based two-region models involving conduit (mobile) and matrix (immobile) regions and are compared against the analytical solution. There is a high correlation between LBM simulations and the analytical solution for two different mobile region fractions. In more realistic conduit/matrix simulation, the breakthrough curve showed classic features and the two-region model fit slightly better than the advection-dispersion equation (ADE). An LBM-based anisotropic dispersion solver is applied to simulate breakthrough curves from a heterogeneous porous medium, which fit the ADE solution. Finally, breakthrough from a karst-like system consisting of a conduit with inertial regime flow in a heterogeneous aquifer is compared with the advection-dispersion and two-region analytical solutions.  相似文献   
20.
Conceptions encompassing climate change are irreversible rise of atmospheric carbon dioxide (CO2) concentration, increased temperature, and changes in rainfall both in spatial- and temporal-scales worldwide. This will have a major impact on wheat production, particularly if crops are frequently exposed to a sequence, frequency, and intensity of specific weather events like high temperature during growth period. However, the process of wheat response to climate change is complex and compounded by interactions among atmospheric CO2 concentration, climate variables, soil, nutrition, and agronomic management. In this study, we use the Agricultural Production Systems sIMulator (APSIM)-wheat model, driven by statistically downscaled climate projections of 18 global circulation models (GCMs) under the 2007 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 CO2 emission scenario to examine impact on future wheat yields across key wheat growing regions considering different soil types in New South Wales (NSW) of Australia. The response of wheat yield, yield components, and phenology vary across sites and soil types, but yield is closely related to plant available water capacity (PAWC). Results show a decreasing yield trend during the period of 2021–2040 compared to the baseline period of 1961–1990. Across different wheat-growing regions in NSW, grain yield difference in the future period (2021–2040) over the baseline (1961–1990) varies from +3.4 to ?14.7 %, and in most sites, grain number is decreased, while grain size is increased in future climate. Reduction of wheat yield is mainly due to shorter growth duration, where average flowering and maturing time are advanced by an average of 11 and 12 days, respectively. In general, larger negative impacts of climate change are exhibited in those sites with higher PAWC. Current wheat cultivars with shorter growing season properties are viable in the future climate, but breading for early sowing wheat varieties with longer growing duration will be a desirable adaptation strategy for mitigating the impact of changing climate on wheat yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号