首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   1篇
测绘学   2篇
大气科学   3篇
地球物理   9篇
地质学   19篇
海洋学   4篇
综合类   1篇
自然地理   23篇
  2023年   1篇
  2021年   3篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2011年   6篇
  2010年   6篇
  2009年   6篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1985年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
21.
Environmental exposure to metals is believed to affect marine mammal health adversely including immunosuppression or acute as well as chronic inflammatory processes leading to hypersensitivities or autoimmune diseases. Metal-specific hypersensitivities were found in several pinnipeds of the North Sea. However, hypersensitivity is a complex phenomenon whose characteristics are still not completely understood; in particular, effects on health are not well established. In the present study, we compared basic hematological and biochemical parameters of seals with and without metal-specific hypersensitivities. We found altered hematological parameters and liver enzyme patterns in seals with a metal-induced hypersensitivity, including a reduction in macrophages, an increase in lymphocytes, and elevated levels of lactate dehydrogenase. These findings support the suggestion of a chronic influence of metal pollutants on the health of marine mammals of the North Sea.  相似文献   
22.
Subfossil remains of the Pediastrum-algae group (Fam. Hydrodictyaceae) are frequently found in lake sediments, but very few studies have used them as palaeoclimate and palaeolimnological indicators. This study explored the species composition of Pediastrum assemblages in shallow floodplain lakes in northern Germany during two transitional periods from cold to temperate climate conditions (GS-2/GI-1 and GI-1/Holocene). We identified Pediastrum taxa to subspecies level and used multivariate statistics (constrained clustering, principal component analysis and redundancy analysis) to show that shifts in taxonomic composition reflected the strong Late Glacial climate oscillations. The Pediastrum assemblages indicate that climate amelioration already begun shortly before the main GS-2/GI-1 summer-temperature transition. In contrast to previous studies that identified trophic state as the main driver of change in Pediastrum species composition, we identified climate shifts and related factors as the major drivers of community change. Water depth and trophic state probably acted as secondary factors that were responsible for differences in Pediastrum response between the first and second investigated climate transitions. During cold periods, Pediastrum algae composition was controlled mainly by environmental variables, whereas during warm periods, Pediastrum assemblages may have been influenced to a greater extent by intra- and intergeneric competition. This study contributes to knowledge about ecological niches of Pediastrum species. Size-measurements on Pediastrum coenobia reveal that one response of Pediastrum algae to climate shifts probably was size change. Coenobia of Pseudopediastrum boryanum var. boryanum were significantly smaller during cold climate periods than during temperate periods. The shifts in Pediastrum species composition and coenobium size suggest this algae group has great potential for enabling palaeoecological and palaeoclimate inferences.  相似文献   
23.
The extreme depletion of the Earth’s mantle in sulfur is commonly seen as a signature of metal segregation from Earth’s mantle to Earth’s core. However, in addition to S, the mantle contains other elements as volatile as S that are hardly depleted relative to the lithophile volatility trend although they are potentially as siderophile as sulfur. We report experiments in metal-sulfide–silicate systems to show that the CI normalized abundances of S, Pb, and Sn in Earth’s mantle cannot be reproduced by element partitioning in Fe ± S–silicate systems, neither at low nor at high pressure. Much of the volatile inventory of the Earth’s mantle must have been added late in the accretion history, when metal melt segregation to the core had become largely inactive. The great depletion in S is attributed to the selective segregation of a late sulfide matte from an oxidized and largely crystalline mantle. Apparently, the volatile abundances of Earth’s mantle are not in redox equilibrium with Earth’s core.  相似文献   
24.
We have experimentally determined the partitioning of REE (rare earth elements) between zoisite and hydrous silicate melt at 1,100 °C and 3 GPa. All REE behave moderately compatible in zoisite with respect to the melt and all show a smooth parabolic dependence on ionic radius. The partitioning parabola peaks at Nd , and the compatibility slightly decreases towards La and decreases by half an order of magnitude towards Yb . Application of the elastic strain model of Blundy and Wood (1994) to the available zoisite and allanite REE mineral/melt partitioning data and comparison with partitioning pattern calculated from a combination of structural and physical data (taken from the literature) with the elastic strain model suggest that in zoisite REE prefer the A1-site and that only La and Ce are incorporated into the A2-site in significant amounts. In contrast, in allanite, all REE are preferentially incorporated into the large and highly co-ordinated A2 site. As a result, zoisite fractionates the MREE effectively from the HREE and moderately from the LREE, while allanite fractionates the LREE very effectively from the MREE and HREE. Consequently, the presence of either zoisite or allanite during slab melting will lead to quite different REE pattern in the produced melt.Editorial responsibility: J. Hoefs  相似文献   
25.
Gravity driven mass-flow deposits proven by sedimentary and digital echosounder data are indicative for prevailing dynamic sedimentary conditions along the continental margin of the western Argentine Basin. In this study we present geochemical data from a total of 23 gravity cores. Pore-water SO4 is generally depleted within a few meters below the sediment surface by anaerobic oxidation of methane (AOM). The different shapes of SO4 profiles (concave, kink- and s-type) can be consistently explained by sedimentary slides possibly in combination with changes in the CH4 flux from below, thus, mostly representing transient pore-water conditions. Since slides may keep their original sedimentary signature, a combined analysis and numerical modeling of geochemical, physical properties, and hydro acoustic data could be applied in order to reconstruct the sedimentary history. We present first order estimates of the dating of sedimentary events for an area where conventional stratigraphic methods failed to this day. The results of the investigated sites suggest that present day conditions are the result of events that occurred decades to thousands of years ago and promote a persisting mass transport from the shelf into the deep-sea, depositing high amounts of reactive compounds. The high abundance of reactive iron phases in this region maintains low hydrogen sulfide levels in the sediments by a nearly quantitative precipitation of all reduced sulfate by AOM. For the total region we estimate a SO4 (or CH4) flux of 6.6 × 1010 moles per year into the zone of AOM. Projected to the global continental slope and rise area, this may sum up to about 2.6 × 1012 moles per year. Provided that the sulfur is completely fixed in the sediments it is about twice the global value of the recent global sulfur burial in marine sediments of 1.2 × 1012 moles per year as previously estimated. Thus, AOM obviously contributes very significantly to the regulation of global sulfur reservoirs, which is hitherto not sufficiently recognized. This finding may have implications for global geochemical models, as sulfur burial is an important control factor in the development of atmospheric oxygen levels over time.  相似文献   
26.
The high permeability of sediments and strong near-bottom currents cause seawater to infiltrate the surface layers of Middle Atlantic Bight shelf deposits. In this study, sandy sediment cores from 11 to 12 m water depth were percolated with filtered seawater on shipboard. Sedimentary oxygen consumption (SOC) increased non-linearly with pore water flow, approaching maximum rates of 120 mmol m−2 d−1 (May 2001) or 75 mmol m−2 d−1(July 2001). The addition of acetate to the inflowing water promptly enhanced the release of dissolved inorganic carbon (DIC) from the cores. DIC production rates were a linear function of acetate concentration, ranging from 100 to 300 mmol m−2 d−1 without substrate addition to 572 mmol m−2 d−1 with 100 mM acetate. The sediments also hydrolyzed a glucose pseudopolymer, and the liberated glucose prompted an increase of SOC. Our results suggest that decomposition rates of organic matter in permeable sands can exceed those of fine-grained, organic-rich deposits, when water currents cause advective interstitial flow, supplying the subsurface microbial community with degradable material and electron acceptors. We conclude that the highly permeable sand beds of the Middle Atlantic Bight are responsive within minutes to hours and efficiently operate as biocatalytical filters.  相似文献   
27.
The multidisciplinary study of sediment cores from Laguna Zoñar (37°29′00′′ N, 4°41′22′′ W, 300 m a.s.l., Andalucía, Spain) provides a detailed record of environmental, climatic and anthropogenic changes in a Mediterranean watershed since Medieval times, and an opportunity to evaluate the lake restoration policies during the last decades. The paleohydrological reconstructions show fluctuating lake levels since the end of the Medieval Warm Period (ca. AD 1300) till the late 19th century and a more acute dry period during the late 19th century – early 20th century, after the end of the Little Ice Age. Human activities have played a significant role in Laguna Zoñar hydrological changes since the late 19th century, when the outlet was drained, and particularly in the mid-20th century (till 1982) when the spring waters feeding the lake were diverted for human use. Two main periods of increased human activities in the watershed are recorded in the sediments. The first started with the Christian conquest and colonization of the Guadalquivir River Valley (13th century) particularly after the fall of the Granada Kingdom (15th century). The second one corresponds to the late 19th century when more land was dedicated to olive cultivation. Intensification of soil erosion occurred in the mid-20th century, after the introduction of farm machinery. The lake was declared a protected area in the early 1980s, when some agricultural practices were restricted, and conservation measures implemented. As a consequence, the lake level increased, and some littoral zones were submerged. Pollen indicators reflect this limnological change during the last few decades. Geochemical indicators show a relative decrease in soil erosion, but not changes in the amount of chemical fertilizers reaching the lake. This study provides an opportunity to evaluate the relative significance of human vs. climatic factors in lake hydrology and watershed changes during historical times. Paleolimnological reconstructions should be taken into account by natural resources agencies to better define lake management policies, and to assess the results of restoration policies.  相似文献   
28.
Sr isotope and Ca/Mg/Sr chemical compositions of freshwater ostracode tests separated from a sediment core represent the last 16 ka of sedimentation in Lake Constance, Central Europe. The chemical evolution of the paleowater's dissolved load of Lake Constance was estimated by correcting the ostracode data for Ca/Mg/Sr fractionation due to biogenic calcification. Since the Late Pleistocene deglaciation, the Ca/Sr molar ratios of paleowaters increased systematically from about 100 (a near marine signature) to about 200. Ca/Mg molar ratios varied in the range of 1–25. The 87Sr/86Sr ratios indicate Late Pleistocene paleowater compositions of 0.7086–0.7091, significantly more radiogenic than present day waters (0.7085). Sr isotopes and Ca/Mg/Sr chemical data together show that weathering of Mesozoic evaporites consistently dominated the dissolved Sr load (80–90%). Carbonate and silicate weathering were less important (1–10%). Trends of Sr dissolved loads were therefore not related to Mg which was mainly mobilized by carbonate weathering. Biotite weathering was an important source of radiogenic Sr in the paleowaters. The short-term release (duration about 600–800 years) of radiogenic Sr during glacier retreat started 15.2 ka ago and was due to enhanced biotite weathering at the glacier base. Long-term release of radiogenic Sr was due to biotite weathering in glacial soils and silicate rocks, and has gradually declined since the Late Pleistocene/Holocene transition.  相似文献   
29.
Microbial activity in permeable tidal flat margin sediments is enhanced by two main processes. First, organic matter is supplied by rapid sedimentation at prograding tidal flat margins. Second, surface and deep pore water advection lead to a replenishment of the dissolved organic matter and sulfate pools. Increasing microbial activity towards the low water line is reflected in sulfate and methane profiles as well as in total cell numbers, sulfate reduction rates, and remineralization products. The impact of high sedimentation rates on pore water biogeochemistry is confirmed by inverse modeling reproducing the depth profiles obtained by measurements. In central parts of the tidal flats, low sedimentation rates and pore water flow velocities limit microbial activity despite the high availability of electron acceptors for microbial respiration such as sulfate. Therefore, tidal flat margins with high microbial activity are of special importance for budgeting biogeochemical cycling in tidal flat areas.  相似文献   
30.
Lake Ohrid is considered to be of Pliocene origin and is the oldest extant lake in Europe. A 1,075-cm-long sediment core was recovered from the southeastern part of the lake, from a water depth of 105 m. The core was investigated using geophysical, granulometric, biogeochemical, diatom, ostracod, and pollen analyses. Tephrochronology and AMS radiocarbon dating of plant macrofossils reveals that the sediment sequence spans the past ca. 39,500 years and features a hiatus between ca. 14,600 and 9,400 cal. year BP. The Pleistocene sequence indicates relatively stable and cold conditions, with steppe vegetation in the catchment, at least partial winter ice-cover of the lake, and oxygenated bottom waters at the coring site. The Holocene sequence indicates that the catchment vegetation had changed to forest dominated by pine and summer-green oak. Several of the proxies suggest the impact of abrupt climate oscillations such as the 8.2 or 4.0 ka event. The observed changes, however, cannot be related clearly to a change in temperature or humidity. Human impact started about 5,000 cal. year BP and increased significantly during the past 2,400 years. Water column mixing conditions, inflow from subaquatic springs, and human impact are the most important parameters influencing internal lake processes, notably affecting the composition and characteristics of the sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号