首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   878篇
  免费   28篇
  国内免费   5篇
测绘学   4篇
大气科学   81篇
地球物理   178篇
地质学   386篇
海洋学   87篇
天文学   90篇
综合类   1篇
自然地理   84篇
  2024年   2篇
  2022年   2篇
  2021年   15篇
  2020年   18篇
  2019年   18篇
  2018年   20篇
  2017年   26篇
  2016年   32篇
  2015年   33篇
  2014年   29篇
  2013年   55篇
  2012年   41篇
  2011年   64篇
  2010年   47篇
  2009年   42篇
  2008年   48篇
  2007年   51篇
  2006年   51篇
  2005年   41篇
  2004年   23篇
  2003年   22篇
  2002年   26篇
  2001年   15篇
  2000年   18篇
  1999年   16篇
  1998年   10篇
  1997年   11篇
  1996年   9篇
  1995年   6篇
  1994年   9篇
  1993年   9篇
  1992年   8篇
  1991年   13篇
  1990年   3篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   9篇
  1984年   10篇
  1983年   4篇
  1982年   5篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1975年   2篇
  1973年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有911条查询结果,搜索用时 18 毫秒
51.
Marine aragonite, in the form of corals and/or shells, provides useful markers of geological and archaeological events. It is, therefore, important to have simple and accurate methods of dating these materials. Electron spin resonance (ESR) has previously been shown to be a reliable method for establishing the age of aragonitic coral samples in the time period approximately 100 ka B.P. The primary purpose of the present work is to discuss the problems encountered in extending this method to considerably older samples, up to 600 ka BP in age. In this time period there are questions about the stability of the ESR signal. The samples investigated are aragonitic corals from reef terraces of Barbados, West Indies, all of which have previously been dated by the methods, and by U-series disequilibrium, for samples below the limit of this method. There is generally good agreement for samples up to about 300 ka in age; older samples, even unrecrystallized, appear younger when dated by ESR than by . The source of this discrepancy is not clear. The explanation of thermal fading is not adequate. However, it appears likely that in most cases ESR will be able to be used to date materials up to this age. Further investigation is needed to determine tests that will distinguish datable samples from non-datable ones.  相似文献   
52.
53.
Natural Hazards - In November 2015, China government announced that the national carbon emissions trading market is expected to start in 2017. Carbon emission trading system is a raising concern...  相似文献   
54.
Two higher plant species (rye grass and clover) were cultivated under laboratory conditions on two substrates (solution, phlogopite) in order to constrain the corresponding Mg isotope fractionations during plant growth and Mg uptake. We show that bulk plants are systematically enriched in heavy isotopes relative to their nutrient source. The Δ26Mgplant-source range from 0.72‰ to 0.26‰ for rye grass and from 1.05‰ to 0.41‰ for clover. Plants grown on phlogopite display Mg isotope signatures (relative to the Mg source) ∼0.3‰ lower than hydroponic plants. For a given substrate, rye grass display lower δ26Mg (by ∼0.3‰) relative to clover. Magnesium desorbed from rye grass roots display a δ26Mg greater than the nutrient solution. Adsorption experiments on dead and living rye grass roots also indicate a significant enrichment in heavy isotopes of the Mg adsorbed on the root surface. Our results indicate that the key processes responsible for heavy isotope enrichment in plants are located at the root level. Both species also exhibit an enrichment in light isotopes from roots to shoots (Δ26Mgleaf-root = −0.65‰ and −0.34‰ for rye grass and clover grown on phlogopite respectively, and Δ26Mgleaf-root of −0.06‰ and −0.22‰ for the same species grown hydroponically). This heavy isotope depletion in leaves can be explained by biological processes that affect leaves and roots differently: (1) organo-Mg complex (including chlorophyll) formation, and (2) Mg transport within plant. For both species, a positive correlation between δ26Mg and K/Mg was observed among the various organs. This correlation is consistent with the link between K and Mg internal cycles, as well as with formation of organo-magnesium compounds associated with enrichment in heavy isotopes. Considering our results together with the published range for δ26Mg of natural plants and rivers, we estimate that a significant change in continental vegetation would induce a change of the mean river δ26Mg that is comparable to analytical uncertainties.  相似文献   
55.
High-pressure crystal structures and compressibilities have been determined by x-ray methods for MgAl2O4 spinel and its isomorph magnetite, Fe3O4. The measured bulk moduli, K, of spinel and magnetite (assuming K′=4) are 1.94±0.06 and 1.86±0.05 Mbar, respectively, in accord with previous ultrasonic determinations. The oxygen u parameter, the only variable atomic position coordinate in the spinel structure (Fd3m, Z=8), decreases with pressure in MgAl2O4, thus indicating that the magnesium tetrahedron is more compressible than the aluminum octahedron. In magnetite the u parameter is unchanged, and both tetrahedron and octahedron display the 1.9 Mbar bulk modulus characteristic of the entire crystal. This behavior contrasts with that of nickel silicate spinel (γ-Ni2SiO4), in which the u parameter increases with pressure because the silicon tetrahedron is relatively incompressible compared to the nickel octahedron.  相似文献   
56.
Jarosite phases are common minerals in acidic, sulfate-rich environments. Here, we report heat capacities (C p) and standard entropies (S°) for a number of jarosite samples. Most samples are close to the nominal composition AFe3(SO4)2(OH)6, where A = K, Na, Rb, and NH4. One of the samples has a significant number of defects on the Fe sites and is called the defect jarosite; others are referred to as A-jarosite. The samples, their compositions, and the entropies at T = 298.15 K are:
Sample Chemical composition S o/(J mol−1 K−1)
K-jarosite K0.92(H3O)0.08Fe2.97(SO4)2(OH)5.90(H2O)0.10 427.4 ± 0.7
Na-jarosite Na0.95(H3O)0.05Fe3.00(SO4)2(OH)6.00 436.4 ± 4.4
Rb-jarosite RbFe2.98(SO4)2(OH)5.95(H2O)0.05 411.9 ± 4.1
NH4-jarosite (NH4)0.87(H3O)0.13Fe3.00(SO4)2(OH)6.00 447.2 ± 4.5
Defect jarosite K0.94(H3O)0.06Fe2.34(SO4)2(OH)4.01(H2O)1.99 412.7 ± 4.1
There are additional configurational entropies of 13.14 and 8.23 J mol−1 K−1 in defect and NH4-jarosite, respectively. A detailed analysis of the synchrotron X-ray diffraction patterns showed a large anisotropic peak broadening for defect and NH4-jarosite. The fits to the low-temperature (approx. <12 K) C p data showed that our samples can be divided into two groups. The first group is populated by the K-, Na-, Rb-, and NH4-jarosite samples, antiferromagnetic at low temperatures. The second group contains the H3O-jarosite (studied previously) and the defect jarosite. H3O- and defect jarosite are spin glasses and their low-T C p was fit with the expression C p = γT + ΣB j T j , where j = (3, 5, 7, 9). The linear term is typical for spin glasses and the sum represents the lattice contribution to C p. Surprisingly, the C p of the K-, Na-, Rb-, and NH4-jarosite samples, which are usually considered to be antiferromagnetic at low temperatures, also contains a large linear term. This finding suggests that even these phases do not order completely, but have a partial spin-glass character below their Néel transition temperature.  相似文献   
57.
To explore planetary evolution, we provide conductive cooling profiles that account for planet size, phonon diffusivity and various internal heating scenarios. Our new analytical solution for simple cooling of spheres reveals that heat is removed from only Earth's outermost ~1000 km over geological time. Numerical models with decaying heat production show that any upward concentration of radionuclides causes high temperatures at shallow depths, forcing interior temperatures to increase with time while producing a thermal gradient that forbids lower mantle convection. Hence, differentiation drives upper mantle magmatism and tectonics, leaving a quiescent but hot deep interior, while slowly melting the core.  相似文献   
58.
The contamination of soils by metals issuing from municipal solid waste (MSW) disposal in tropical environments has hardly been studied with regard to the particular problems associated with them, i.e., generally a high permeability of soils despite the abundance of clay, and the role of reactive Fe compounds. From a previous geotechnical and chemical survey, three latosol profiles differently affected by MSW leachates in the region of Londrina (Paraná, Brazil) were selected. The aims were to evaluate the extent of their contamination, to better understand the fate of potentially harmful metals in tropical soils and rank the determining factors. Samples between 0.5 and 7 m depth were analyzed for their physical, mineralogical and chemical properties, and their micro-morphology was described by optical and transmission electron microscopy. Two steps of a sequential extraction procedure helped to assess the mobility of elements and to better discriminate between metals originating from pedogenesis and issued from MSW. These combined approaches showed that exposed soil profiles have been impacted at various depths, down to 7 m, through increased metal content, especially enhanced mobility of Zn, Co, Mn, Cu and Fe, and through increased salinity and organic matter. The mobility of potentially harmful metals should decrease with pH, which significantly increased in some impacted horizons, but other factors can reverse this trend.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号