首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   32篇
  国内免费   3篇
测绘学   5篇
大气科学   27篇
地球物理   89篇
地质学   105篇
海洋学   68篇
天文学   41篇
综合类   3篇
自然地理   50篇
  2022年   2篇
  2021年   11篇
  2020年   7篇
  2019年   7篇
  2018年   11篇
  2017年   11篇
  2016年   19篇
  2015年   9篇
  2014年   13篇
  2013年   39篇
  2012年   20篇
  2011年   14篇
  2010年   25篇
  2009年   19篇
  2008年   15篇
  2007年   13篇
  2006年   12篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2002年   8篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   9篇
  1987年   5篇
  1986年   6篇
  1984年   2篇
  1983年   7篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有388条查询结果,搜索用时 531 毫秒
111.
Many forested steeplands in the western United States display a legacy of disturbances due to timber harvest, mining or wildfires, for example. Such disturbances have caused accelerated hillslope erosion, leading to increased sedimentation in fish‐bearing streams. Several restoration techniques have been implemented to address these problems in mountain catchments, many of which involve the removal of abandoned roads and re‐establishing drainage networks across road prisms. With limited restoration funds to be applied across large catchments, land managers are faced with deciding which areas and problems should be treated first, and by which technique, in order to design the most effective and cost‐effective sediment reduction strategy. Currently most restoration is conducted on a site‐specific scale according to uniform treatment policies. To create catchment‐scale policies for restoration, we developed two optimization models – dynamic programming and genetic algorithms – to determine the most cost‐effective treatment level for roads and stream crossings in a pilot study basin with approximately 700 road segments and crossings. These models considered the trade‐offs between the cost and effectiveness of different restoration strategies to minimize the predicted erosion from all forest roads within a catchment, while meeting a specified budget constraint. The optimal sediment reduction strategies developed by these models performed much better than two strategies of uniform erosion control which are commonly applied to road erosion problems by land managers, with sediment savings increased by an additional 48 to 80 per cent. These optimization models can be used to formulate the most cost‐effective restoration policy for sediment reduction on a catchment scale. Thus, cost savings can be applied to further restoration work within the catchment. Nevertheless, the models are based on erosion rates measured on past restoration sites, and need to be updated as additional monitoring studies evaluate long‐term basin response to erosion control treatments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
112.
Given a precision threshold to be imposed on the group velocity error and a finite difference scheme for the acoustic wave equation, it is possible to determine time-step and grid-spacing in an optimal manner, i.e., so as to minimize the computational cost. Using this optimal cost as a criterion, it becomes easy to compare schemes for efficiency in homogeneous media. Heterogeneous media with constant density can be accommodated to a certain extent by minimizing the cost over a range of Courant numbers. Such analysis shows that, amongst the second-order Taylor series schemes in time, higher-order schemes are generally more efficient than lower-order schemes. However, this result does not extend to very high order schemes.  相似文献   
113.
114.
115.
116.
Fires produce an aromatic particulate residue commonly referred to as pyrogenic carbon (PyC). Particulate PyC is low density, high porosity, and is predominantly deposited on the soil surface in post-fire landscapes. These characteristics create a material that is prone to mobility, both vertically down the soil profile and laterally across the landscape even in low-relief landforms. Because of its tendency for lateral mobilization, we argue here that PyC's first interaction with water determines its environmental fate and persistence, not its interactions with soil minerals or microbes. PyC's first interactions with water determine: the amount of PyC that will enter the soil profile and experience microbial and geochemical alterations, whether it will be buried in depositional environments and stored on the landscape, or if it will be transported to streams and eventually to the ocean. Here we posit that this crucial first interaction with the hydrologic cycle occurs on the timescale of days to weeks, and therefore supersedes microbial decomposition as the primary control on PyC's environmental persistence. © 2020 John Wiley & Sons, Ltd.  相似文献   
117.
There is increased interest in the potential of tree planting to help mitigate flooding using nature-based solutions or natural flood management. However, many publications based upon catchment studies conclude that, as flood magnitude increases, benefit from forest cover declines and is insignificant for extreme flood events. These conclusions conflict with estimates of evaporation loss from forest plot observations of gross rainfall, through fall and stem flow. This study explores data from existing studies to assess the magnitudes of evaporation and attempts to identify the meteorological conditions under which they would be supported. This is achieved using rainfall event data collated from publications and data archives from studies undertaken in temperate environments around the world. The meteorological conditions required to drive the observed evaporation losses are explored theoretically using the Penman–Monteith equation. The results of this theoretical analysis are compared with the prevailing meteorological conditions during large and extreme rainfall events in mountainous regions of the United Kingdom to assess the likely significance of wet canopy evaporation loss. The collated dataset showed that event Ewc losses between approximately 2 and 38% of gross rainfall (1.5 to 39.4 mm day−1) have been observed during large rainfall events (up to 118 mm day−1) and that there are few data for extreme events (>150 mm day−1). Event data greater than 150 mm (reported separately) included similarly high percentage evaporation losses. Theoretical estimates of wet-canopy evaporation indicated that, to reproduce the losses towards the high end of these observations, relative humidity and the aerodynamic resistance for vapour transport needed to be lower than approximately 97.5% and 0.5 to 2 s m−1 respectively. Surface meteorological data during large and extreme rainfall events in the United Kingdom suggest that conditions favourable for high wet-canopy evaporation are not uncommon and indicate that significant evaporation losses during large and extreme events are possible but not for all events and not at all locations. Thus the disparity with the results from catchment studies remains.  相似文献   
118.
119.
Cold-seep environments and their associated symbiont-bearing megafaunal communities create islands of primary production for macro- and meiofauna in the otherwise monotonous and nutrient-poor deep-sea environment. To examine the spatial variation and distribution patterns of metazoan meiobenthos in different seepage-related habitats, samples were collected in two regions off Norway: several pockmarks associated with the Storegga Slide including the Nyegga pockmark area (730 m; 64°N), and the active, methane-venting Håkon Mosby Mud Volcano (HMMV) west of the Barents Sea (1280 m; 72°N). Based on sediment geochemistry and associated epifauna, three different habitat types were distinguished across the two regions: (1) reduced sediment with suboxic conditions, sometimes covered by bacterial mats, (2) sediment colonised by chemosynthetic, siboglinid tubeworms, and (3) sediment outside the influence of seepage and without a large chemosynthetic fauna. Meiofaunal communities varied strongly in terms of generic diversity and dominance among the different habitat types. Control sites and Siboglinidae polychaete fields both supported high nematode genus richness similar to normal deep-sea sediments, whereas the reduced sediments yielded a genus-poor nematode community dominated by one or two successful species. Meiofaunal densities in the different habitats were negatively correlated with macrobenthic densities. An extremely dense (>11,000 ind. 10 cm–2), mono-specific nematode population appeared to be restricted to the bacterial mats at HMMV. It consisted of a new cryptic species of the Halomonhystera disjuncta complex, which has been described from intertidal habitats in the North Sea. The reduced seep sediments at Nyegga did not yield H. disjuncta but were dominated by Terschellingia longicaudata, another cosmopolitan nematode species known to be abundant in organic-rich, oxygen-poor, shallow-water environments. These observations point to a past or recent connection between margins and shallow-water habitats.  相似文献   
120.
There is great interest in modelling the export of nitrogen (N) and phosphorus (P) from agricultural fields because of ongoing challenges of eutrophication. However, the use of existing hydrochemistry models can be problematic in cold regions because models frequently employ incomplete or conceptually incorrect representations of the dominant cold regions hydrological processes and are overparameterized, often with insufficient data for validation. Here, a process‐based N model, WINTRA, which is coupled to a physically based cold regions hydrological model, was expanded to simulate P and account for overwinter soil nutrient biochemical cycling. An inverse modelling approach, using this model with consideration of parameter equifinality, was applied to an intensively monitored agricultural basin in Manitoba, Canada, to help identify the main climate, soil, and anthropogenic controls on nutrient export. Consistent with observations, the model results suggest that snow water equivalent, melt rate, snow cover depletion rate, and contributing area for run‐off generation determine the opportunity time and surface area for run‐off–soil interaction. These physical controls have not been addressed in existing models. Results also show that the time lag between the start of snowmelt and the arrival of peak nutrient concentration in run‐off increased with decreasing antecedent soil moisture content, highlighting potential implications of frozen soils on run‐off processes and hydrochemistry. The simulations showed TDP concentration peaks generally arriving earlier than NO3 but also decreasing faster afterwards, which suggests a significant contribution of plant residue Total dissolved Phosphorus (TDP) to early snowmelt run‐off. Antecedent fall tillage and fertilizer application increased TDP concentrations in spring snowmelt run‐off but did not consistently affect NO3 run‐off. In this case, the antecedent soil moisture content seemed to have had a dominant effect on overwinter soil N biogeochemical processes such as mineralization, which are often ignored in models. This work demonstrates both the need for better representation of cold regions processes in hydrochemical models and the model improvements that are possible if these are included.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号