首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
大气科学   1篇
地球物理   5篇
地质学   16篇
海洋学   2篇
天文学   1篇
综合类   1篇
自然地理   1篇
  2019年   1篇
  2014年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2000年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有27条查询结果,搜索用时 46 毫秒
11.
We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4).Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project.We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow.Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks.We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.  相似文献   
12.
13.
Despite recent progress in deep-sea biodiversity assessments in the Southern Ocean (SO), there remain gaps in our knowledge that hamper efficient deep-sea monitoring in times of rapid climate change. These include geographical sampling bias, depth and size-dependent faunal gaps in biology, ecology, distribution, and phylogeography, and the evolution of SO species. The phenomena of species patchiness and rarity are still not well understood, possibly because of our limited understanding of physiological adaptations and thresholds. Even though some shallow water species have been investigated physiologically, community-scale studies on the effects of multiple stressors related to ongoing environmental change, including temperature rise, ocean acidification, and shifts in deposition of phytoplankton, are completely unknown for deep-sea organisms. Thus, the establishment of long-term and coordinated monitoring programs, such as those rapidly growing under the umbrella of the Southern Ocean Observing System (SOOS) or the Deep Ocean Observing Strategy (DOOS), may represent unique tools for measuring the status and trends of deep-sea and SO ecosystems.  相似文献   
14.
Pebbles of potassic granitoids and metamorphites constitute up to 5% of the basal conglomerate of the Moodies Group in a ratio of 2 : 1. The granitoid pebbles frequently show micrographic quartz–feldspar intergrowth, whereas the metamorphites—of a modal composition similar to that of the granitoids—are characterized by large quartz grains which could represent original quartz phenocrysts in felsic volcanic precursors.The granitoids show high K2O, Sr, K2O/Na2O, and K/Rb, small enrichment of light REE, large negative Eu-anomalies, and slightly depleted and fractionated heavy REE. Compared to the granitoids the metamorphites show higher Fe2O3, TiO2, and Cr concentrations, greater enrichment of light REE, and also large negative Eu-anomalies.There is little similarity between the Moodies pebbles and the majority of the rocks of the Ancient Gneiss Complex of Swaziland (AGC). There is only some similarity of the REE distribution patterns between the pebbles and the Mkhondo Metamorphic Suite, possibly an areally restricted phase of the AGC. The geochemical data, and especially the large negative Eu-anomalies suggest that the Moodies pebbles were derived from granites which represent residual magmas from which much plagioclase had been removed. The granites crystallized at depths of < 7 km from magmas with low H2O-pressures in a rather thick sialic crust. It appears possible that the pre-Moodies granitoids originated through partial melting of low-Al2O3 siliceous gneisses of the AGC. A chronologic connection of the formation of the granitoids with the late Onverwacht Group volcanicity is possible.  相似文献   
15.
Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks from the island of Syros (Greece) were studied, using secondary ion mass spectrometry, inductively coupled plasma optical emission spectrometry and prompt gamma neutron activation analysis. Partitioning between coexisting mineral phases was found to be rather constant and independent of element concentrations. For several mineral pairs, apparent partition coefficients vary in a narrow range, while concentrations vary by more than an order of magnitude. Hence, it was possible to establish sets of inter-mineral partition coefficients for Li, Be and B among 15 different high-pressure minerals. This data set provides important information on the behaviour of the light elements in different lithologies within subducting slabs from the onset of metamorphism to the eclogite stage. It is essential for modelling trace-element and isotope fractionation during subduction and dehydration of oceanic crust.  相似文献   
16.
The Moldanubian basement of the Schwarzwald contains basic to ultrabasic rocks of both crustal and mantle origin which display high-pressure mineral assemblages or relics of such. In order to constrain the P-T-t evolution of the crustal high-pressure rocks, petrological and geochronological studies have been carried out on three eclogite samples. Geothermobarometric estimations indicate minimum metamorphic pressures of 1.6 GPa and equilibration temperatures of 670 750°C. Reaction textures document various metamorphic stages during exhumation of the high-pressure rocks. The age of high-pressure metamorphism is constrained by Sm-Nd isochrons of 332±13 Ma, 334±11 Ma, and 337±6 Ma defined by garnet, whole rock and clinopyroxene. For one sample, large garnets show prominent growth zoning in terms of major elements, Sm, Nd, and inclusions, dividing the grains into two growth stages. Sm-Nd isotope analyses on these garnets indicate that the time span between the two growth stages is too small to be resolved, reflecting a rather rapid metamorphic evolution. This result is further constrained by a Rb-Sr isochron age of 325±6 Ma on retrograde biotite and whole rock on the same sample. For one of the studied eclogites, formation of the magmatic precursor rocks is possibly approximated by the Ordovician U-Pb upper intercept age of a discordia from zircons.  相似文献   
17.
 This paper presents mineralogical and textural data as well as thermobarometric calculations on ultramafic high-pressure rocks from the Variscan basement of the Schwarzwald (F.R.G.). The rocks form small isolated bodies within low-pressure / high-temperature gneisses and migmatites. The results of this study constrain contrasting P-T evolutions for four garnet-bearing ultramafic high-pressure rocks. Two magnesian garnet-spinal peridotites sampled near the southern margin of the Central Schwarzwald Gneiss Complex (CSGC) were equilibrated at 670–740° C and 1.4–1.8 GPa. These P-T conditions are similar to those recorded by eclogites intercalated in the same basement unit. Two garnet websterites sampled from the northern part of the CSGC have comparatively low Mg/(Mg+Fe) and low Cr and Ni abundances and are interpreted as former cumulates. These rocks most probably experienced an initial high-temperature stage within the spinel peridotite stability field, followed by re-equilibration at 740–850° C / 3.2–4.3 GPa and subsequent recrystallization at lower pressures. Further petrologic studies have to reveal whether ultramafic high-pressure rocks of the Schwarzwald can generally be assigned to these two groups which are mainly defined by contrasting peak pressures. Received: 22 August 1994 / Accepted: 19 January 1995  相似文献   
18.
A petrological, organic geochemical and geochemical study was performed on coal samples from the Soko Mine, Soko Banja basin, Serbia. Ten coal and two carbonaceous clay samples were collected from fresh, working faces in the underground brown coal mine from different parts of the main coal seam. The Lower Miocene, low-rank coal of the Soko Mine is a typical humic coal with huminite concentrations of up to 76.2 vol.%, liptinite less than 14 vol.% and inertinite less than 11 vol.%. Ulminite is the most abundant maceral with variable amounts of densinite and clay minerals. Sporinite and resinite are the most common macerals of the liptinite group. Inertodetrinite is the most abundant maceral of the inertinite group. The mineral-bituminous groundmass identified in some coal samples, and carbonaceous marly clay, indicate sub-aquatic origin and strong bacterial decomposition. The mean random huminite reflectance (ulminite B) for the main coal seam is 0.40 ± 0.05% Rr, which is typical for an immature to early mature stage of organic matter.The extract yields from the coal of the Soko Banja basin ranges from 9413 to 14,096 ppm, in which alkanes constituted 1.0–20.1%, aromatics 1.3–14.7%, asphaltenes 28.1–76.2% and resins 20.2–43.5%. The saturated hydrocarbon fractions included n-C15 to n-C32, with an odd carbon number that predominate in almost all the samples. The contents of n-C27 and n-C29 alkanes are extremely high in some samples, as a contribution of epicuticular waxes from higher plants. Acyclic isoprenoid hydrocarbons are minor constituents in the aliphatic fraction, and the pristane/phytane (Pr/Ph) ratio varies between 0.56 and 3.13, which implies anaerobic to oxic conditions during sedimentation. The most abundant diterpanes were abietane, dehydroabietane and 16α(H)-phyllocladane. In samples from the upper part of the coal seam, diterpanes are the dominant constituents of the alkane fraction. Polycyclic alkanes of the triterpane type are important constituents of alkane fractions. The occurrence of ββ- and αβ-type hopanes from C27 to C31, but without C28, is typical for the Soko Banja coals.The major and trace elements in the coal were analysed using X-ray fluorescence (XRF), and inductively coupled plasma-mass spectrometry (ICP-MS). In comparison with world lignites, using the geometric mean value, the coal from the Soko Banja Basin has a high content of strontium (306.953 mg/kg). Higher values than the world lignites were obtained for Mo (3.614 mg/kg), Ni (8.119 mg/kg), Se (0.884 mg/kg), U (2.642 mg/kg) and W (0.148 mg/kg). Correlation analysis shows inorganic affinity for almost all the major and trace elements, except for S, which has an organic affinity.  相似文献   
19.
Mantle-derived xenoliths from the Marsabit shield volcano (easternflank of the Kenya rift) include porphyroclastic spinel peridotitescharacterized by variable styles of metasomatism. The petrographyof the xenoliths indicates a transition from primary clinopyroxene-bearingcryptically metasomatized harzburgite (light rare earth element,U, and Th enrichment in clinopyroxene) to modally metasomatizedclinopyroxene-free harzburgite and dunite. The metasomatic phasesinclude amphibole (low-Ti Mg-katophorite), Na-rich phlogopite,apatite, graphite and metasomatic low-Al orthopyroxene. Transitionalsamples show that metasomatism led to replacement of clinopyroxeneby amphibole. In all modally metasomatized xenoliths melt pockets(silicate glass containing silicate and oxide micro-phenocrysts,carbonates and empty vugs) occur in close textural relationshipwith the earlier metasomatic phases. The petrography, majorand trace element data, together with constraints from thermobarometryand fO2 calculations, indicate that the cryptic and modal metasomatismare the result of a single event of interaction between peridotiteand an orthopyroxene-saturated volatile-rich silicate melt.The unusual style of metasomatism (composition of amphibole,presence of graphite, formation of orthopyroxene) reflects lowP –T conditions (850–1000°C at < 1·5GPa) in the wall-rocks during impregnation and locally low oxygenfugacities. The latter allowed the precipitation of graphitefrom CO2. The inferred melt was possibly derived from alkalinebasic melts by melt–rock reaction during the developmentof the Tertiary–Quaternary Kenya rift. Glass-bearing meltpockets formed at the expense of the early phases, mainly throughincongruent melting of amphibole and orthopyroxene, triggeredby infiltration of a CO2-rich fluid and heating related to themagmatic activity that ultimately sampled and transported thexenoliths to the surface. KEY WORDS: graphite; peridotite xenoliths; Kenya Rift; modal metasomatism; silicate glass  相似文献   
20.
A temperature–time path was constructed for high-temperature low-pressure (HT–LP) migmatites of the Bayerische Wald, internal zone of the Variscan belt, Germany. The migmatites are characterised by prograde biotite dehydration melting, peak metamorphic conditions of approximately 850 °C and 0.5–0.7 GPa and retrograde melt crystallisation at 800 °C. The time-calibration of the pressure–temperature path is based on U–Pb dating of single zircon and monazite grains and titanite separates, on 40Ar/39Ar ages obtained by incremental heating experiments on hornblende separates, single grains of biotite and K-feldspar, and on 40Ar/39Ar spot fusion ages of biotite determined in situ from sample sections. Additionally, crude estimates of the duration of peak metamorphism were derived from garnet zoning patterns, suggesting that peak temperatures of 850 °C cannot have prevailed much longer than 2.5 Ma. The temperature–time paths obtained for two areas approximately 30 km apart do not differ from each other considerably. U–Pb zircon ages reflect crystallisation from melt at 850–800 °C at 323 Ma (southeastern area) and 326 Ma (northwestern area). The U–Pb ages of monazite mainly coincide with those from zircon but are complicated by variable degrees of inheritance. The preservation of inherited monazite and the presence of excess 206Pb resulting from the incorporation of excess 230Th in monazite formed during HT–LP metamorphism suggest that monazite ages in the migmatites of the Bayerische Wald reflect crystallisation from melt at 850–800 °C and persistence of older grains at these temperatures during a comparatively short thermal peak. The U–Pb ages of titanite (321 Ma) and 40Ar/39Ar ages of hornblende (322–316 Ma) and biotite (313–309 Ma) reflect cooling through the respective closure temperatures of approximately 700, 570–500 and 345–310 °C published in the literature. Most of the feldspars' ages (305–296 Ma) probably record cooling below 150–300 °C, while two grains most likely have higher closure temperatures. The temperature–time paths are characterised by a short thermal peak, by moderate average cooling rates and by a decrease in cooling rates from 100 °C/my at temperatures between 850–800 and 700 °C to 11–16 °C/my at temperatures down to 345–310 °C. Further cooling to feldspar closure for Ar was probably even slower. The lack of decompressional features, the moderate average cooling rates and the decline of cooling rates with time are not easily reconciled with a model of asthenospheric heating, rapid uplift and extension due to lithospheric delamination as proposed elsewhere. Instead, the high peak temperatures at comparatively shallow crustal levels along with the short thermal peak require external advective heating by hot mafic or ultramafic material. Received: 7 July 1999 / Accepted: 28 October 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号