首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   10篇
  国内免费   2篇
测绘学   4篇
大气科学   28篇
地球物理   60篇
地质学   84篇
海洋学   10篇
天文学   15篇
自然地理   23篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   6篇
  2019年   7篇
  2018年   9篇
  2017年   7篇
  2016年   8篇
  2015年   9篇
  2014年   8篇
  2013年   15篇
  2012年   14篇
  2011年   11篇
  2010年   8篇
  2009年   14篇
  2008年   12篇
  2007年   16篇
  2006年   10篇
  2005年   7篇
  2004年   7篇
  2003年   7篇
  2002年   7篇
  2001年   6篇
  2000年   11篇
  1999年   2篇
  1998年   6篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
181.
182.
Perennial pools are common natural features of peatlands, and their hydrological functioning and turnover may be important for carbon fluxes, aquatic ecology, and downstream water quality. Peatland restoration methods such as ditch blocking result in many new pools. However, little is known about the hydrological function of either pool type. We monitored six natural and six artificial pools on a Scottish blanket peatland. Pool water levels were more variable in all seasons in artificial pools having greater water level increases and faster recession responses to storms than natural pools. Pools overflowed by a median of 9 and 54 times pool volume per year for natural and artificial pools, respectively, but this varied widely because some large pools had small upslope catchments and vice versa. Mean peat water‐table depths were similar between natural and artificial pool sites but much more variable over time at the artificial pool site, possibly due to a lower bulk specific yield across this site. Pool levels and pool‐level fluctuations were not the same as those of local water tables in the adjacent peat. Pool‐level time series were much smoother, with more damped rainfall or recession responses than those for peat water tables. There were strong hydraulic gradients between the peat and pools, with absolute water tables often being 20–30 cm higher or lower than water levels in pools only 1–4 m away. However, as peat hydraulic conductivity was very low (median of 1.5 × 10?5 and 1.4 × 10?6 cm s?1 at 30 and 50 cm depths at the natural pool site), there was little deep subsurface flow interaction. We conclude that (a) for peat restoration projects, a larger total pool surface area is likely to result in smaller flood peaks downstream, at least during summer months, because peatland bulk specific yield will be greater; and (b) surface and near‐surface connectivity during storm events and topographic context, rather than pool size alone, must be taken into account in future peatland pool and stream chemistry studies.  相似文献   
183.
Zircon fission track (ZFT), apatite fission track (AFT) and (U–Th)/He thermochronometric data are used to reconstruct the Cenozoic exhumation history of the South China continental margin. A south to north sample transect from coast to continental interior yielded ZFT ages between 116.6 ± 4.7 Ma and 87.3 ± 4.0, indicating that by the Late Cretaceous samples were at depths of 5–6 km in the upper crust. Apatite FT ages range between 60.9 ± 3.6 and 37.3 ± 2.3 Ma with mean track lengths between 13.26 ± 0.16 µm and 13.95 ± 0.19 µm whilst AHe ages are marginally younger 47.5 ± 1.9–15.3 ± 0.5 Ma. These results show the sampled rocks resided in the top 1–1.5 km of the crust for most of the Cenozoic. Thermal history modeling of the combined FT and (U–Th)/He datasets reveal a common three stage cooling history which differed systematically in timing inland away from the rifted margin. 1) Initial phase of rapid cooling that youngs to the north, 2) a period of relative (but not perfect) thermal stasis at ~ 70–60 °C which increases in duration from the south to the north; 3) final-stage cooling to surface temperatures that initiated in all samples between 15 and 10 Ma. The timing and pattern of rock uplift and erosion does not fit with conventional passive margin landscape models that require youngest exhumation ages to be concentrated at or close to the rifted margin. The history of South China margin is more complex aided by weakened crust from the active margin period that immediately preceded rifting and opening of the South China Sea. This rheological inheritance created a transition zone of steeply thinned crust that served as a flexural filter disconnecting the northern margin of the South China block and site of active rifting to the south. Consequently whilst the South China margin displays many features of a rifted continental margin its exhumation history does not conform to conventional images of a passive margin.  相似文献   
184.
We compare two methods for determining the upscaled water characteristics and saturation-dependent anisotropy in unsaturated hydraulic conductivity from a field-scale injection test. In both approaches an effective medium approximation is used to reduce a porous medium of M textures to an equivalent homogenous medium. The first approach is a phenomenological approach based on homogenization and assumes that moisture-based Richards’ equation can be treated like the convective–dispersive equation (CDE). The gravity term, dKz(θ)/d(θ), analogous to the vertical convective velocity in the CDE, is determined from the temporal evolution of the plume centroid along the vertical coordinate allowing calculation of an upscaled Kz(θ). As with the dispersion tensor in the CDE, the rate of change of the second spatial moment in 3D space is used to calculate the water diffusivity tensor, D(θ), from which an upscaled K(θ) is calculated. The second approach uses the combined parameter scale inverse technique (CPSIT). Parameter scaling is used first to reduce the number of parameters to be estimated by a factor M. Upscaled parameters are then optimized by inverse modeling to produce an upscaled K(θ) characterized by a pore tortuosity–connectivity tensor, L. Parameters for individual textures are finally determined from the optimized parameters by inverse scaling using scale factors determined a priori. Both methods produced upscaled K(θ) that showed evidence of saturation dependent anisotropy. Flow predictions with the STOMP simulator, parameterized with upscaled parameters, were compared with field observations. Predictions based on the homogenization method were able to capture the mean plume behavior but could not reproduce the asymmetry caused by heterogeneity and lateral spreading. The CPSIT method captured the effects of heterogeneity and anisotropy and reduced the mean squared residual by nearly 90% compared to local-scale and upscaled parameters from the homogenization method. The Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle under Contract DE-AC05-76RL01830.  相似文献   
185.
This study uses apatite fission track (FT) analysis to constrain the exhumation history of bedrock samples collected from the Altai Mountains in northern Xinjiang, China. Samples were collected as transects across the main structures related to Palaeozoic crustal accretion events. FT results and modeling identify three stages in sample cooling history spanning the Mesozoic and Tertiary. Stage one records rapid cooling to the low temperature part of the fission track partial annealing zone circa 70 ± 10 °C. Stage two, records a period of relative stability with little if any cooling taking place between 75 and 25–20 Ma suggesting the Altai region had been reduced to an area of low relief. Support for this can be found in the adjacent Junngar Basin that received little if any sediment during this interval. Final stage cooling took place in the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. This last stage, linked to the far field effects of the Himalayan collision, most likely generated the surface uplift and relief that define the present-day Altai Mountains.  相似文献   
186.
The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land.  相似文献   
187.
Aga Nowak  Andy Hodson 《水文研究》2015,29(6):1588-1603
Our novel study examines landscape biogeochemical evolution following deglaciation and permafrost change in Svalbard by looking at the productivity of various micro‐catchments existing within one watershed. It also sheds light on how moraine, talus and soil environments contribute to solute export from the entire watershed into the downstream marine ecosystem. We find that solute dynamics in different micro‐catchments are sensitive to abiotic factors such as runoff volume, water temperature, geology, geomorphological controls upon hydrological flowpaths and landscape evolution following sea level and glacial changes. Biotic factors influence the anionic composition of runoff because of the importance of microbial SO42? and NO3? production. The legacy of glaciation and its impact upon sea level changes is shown to influence local hydrochemistry, allowing Cl? to be used as a tracer of thawing permafrost that has marine origins. However, we show that a ‘glacial signal’ dominates solute export from the watershed. Therefore, although climatically driven change in the proglacial area has an influence on local ecosystems, the biogeochemical response of the entire watershed is dominated by glacially derived products of rapid chemical weathering. Consequently, only the study of micro‐catchments existing within watersheds can uncover the landscape response to contemporary climate change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
188.
Rapid and high-magnitude North Atlantic climate oscillations following the Last Glacial Maximum have been correlated to climate change events in western North America. However, the strength of teleconnections between the North Atlantic and the interior of western North America remains poorly understood. We present a U-series calibrated speleothem record from Timpanogos Cave National Monument, located at 2040 m asl in the Wasatch Mountains of Utah, spanning 13.5–10.6 ka. Additionally, we carried out a climate reconstruction for a coeval glacier advance in the Wind River Range of Wyoming. Our results indicate that between 13.5 and 12.8 ka, the Wasatch was probably first cool and dry and then warmed. After 12.8 ka, our record suggests cool and/or wetter conditions followed by reduced moisture until 11.8 ka, followed by an early Holocene wet period. The Timpanogos record exhibits few similarities with those from the North Atlantic. Climate reconstructions of the Titcomb Basin glacier suggest modest temperature depressions relative to modern (<−3 °C) were necessary to sustain the glacier with a moderate increase in precipitation (>150%). The high-altitude speleothem record presented here provides a valuable basis for understanding latest Pleistocene–early Holocene glacial episodes in western North America.  相似文献   
189.
Quantitative interpretation of past land use using palaeolimnological records of sediment yield requires an appropriate soil erosion model. This paper describes the application of a simplified USLE model, comparing the predicted sediment yield with the lake sediment record at Pinto Lake (Central Coast, California). Our principal finding is that simplified USLE prediction, without correction for sediment transport capacity, accurately predicts fine sediment yield. Because the fine component of the soil is delivered far more efficiently than the coarse component, this and related soil erosion models can more readily be applied to the interpretation of palaeolimnological records than to estimation of total sediment yield, for which reliable estimation of hillslope and fluvial sediment storage are more important. The focus on fine sediment also means that the model output is optimal for assessing past ecological impacts of soil erosion on stream water turbidity and particulate transport of pollutants and nutrients.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号