首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2903篇
  免费   132篇
  国内免费   34篇
测绘学   105篇
大气科学   314篇
地球物理   741篇
地质学   890篇
海洋学   267篇
天文学   393篇
综合类   7篇
自然地理   352篇
  2024年   6篇
  2022年   13篇
  2021年   52篇
  2020年   64篇
  2019年   62篇
  2018年   73篇
  2017年   88篇
  2016年   115篇
  2015年   92篇
  2014年   105篇
  2013年   211篇
  2012年   129篇
  2011年   170篇
  2010年   141篇
  2009年   160篇
  2008年   159篇
  2007年   157篇
  2006年   143篇
  2005年   123篇
  2004年   99篇
  2003年   105篇
  2002年   92篇
  2001年   60篇
  2000年   65篇
  1999年   43篇
  1998年   37篇
  1997年   32篇
  1996年   34篇
  1995年   35篇
  1994年   23篇
  1993年   23篇
  1992年   18篇
  1991年   21篇
  1990年   18篇
  1989年   32篇
  1988年   17篇
  1987年   22篇
  1986年   14篇
  1985年   26篇
  1984年   19篇
  1983年   22篇
  1982年   14篇
  1981年   20篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   11篇
  1976年   8篇
  1975年   7篇
  1974年   14篇
排序方式: 共有3069条查询结果,搜索用时 0 毫秒
51.
This paper uses a modified form of Thornthwaite’s moisture index to better quantify climate variability by integrating the effects of temperature and precipitation. Using the moisture index, trends were evaluated over the last 112 years (1895–2006), when unique changes in temperature and precipitation have been documented to have occurred. In addition, data on potential evapotranspiration and the moisture index were used to investigate changing climate and vegetation regions. The results show that the eastern half of the country has been getting wetter, even as temperatures have continued to increase in many areas. In particular, conditions have become wetter in the South, Northeast, and East North Central regions. The changing climate is illustrated by computing climate and vegetation regions for three 30-year periods (1910–1939, 1940–1969, and 1970–1999). Climate regions based on the moisture index show an expansion of the Humid region (where precipitation vastly exceeds climatic demands for water) across the East as well as a westward shift in the zero moisture index line. In terms of vegetation zones, the most dramatic change occurs across the Midwestern prairie peninsula where the wetter conditions lead to a westward expansion of conditions favorable for oak–hickory–pine vegetation.  相似文献   
52.
A link between the Antarctic sea-ice extent and low-frequency atmospheric variations, particularly ENSO, has been suggested by recent modeling and empirical studies. This question is examined here using a high-resolution (by week, by region) data base of Antarctic sea-ice extent for the 1973–1982 period. Although of relatively short duration by Northern Hemisphere standards, such a data base offers an opportunity rare in Southern Hemisphere climate studies. The seaice variations are examined in the context of longer-term indices of the large-scale atmospheric circulation. These are a Southern Oscillation Index (SOI) and an index of sea-level pressure (SLP) wavenumber one in the Southern Hemisphere extratropics. The indices are updated through 1982, and their associations with regional-scale pressure indices in the Australia-New Zealand sector are also examined. The 1973–1982 period is anomalous when compared with the period 1951–1972. Correlation analysis of the monthly sea ice and circulation index values reveals that much of the apparent link between the ice and the SOI suggested in previous studies arises from autocorrelations present in both data sets and the strong annual cycle of sea-ice extent. Removing these effects from the data and re-running the correlations reveals that most of the resulting significant associations between the ice and one or other of the circulation indices can probably be explained on the basis of chance. In order to reconcile these findings with previous studies that show some strong ice-circulation interactions on regional scales, only those months in which significant correlations occur between both largescale circulation indices and the sea ice are examined further. These occur preferentially in the Ross and Weddell sectors, which constitute the regions contributing most to the variability of Antarctic sea ice. The analysis suggests that the sea-ice-extent changes lag the SOI by several months but may precede changes in extratropical SLP wavenumber one. Confirmation of these tentative regional ice extent-circulation teleconnections necessarily awaits the forward extension of the high-resolution sea-ice data base beyond the 10 years available here.This paper is based on material presented at the Conference on Mechanisms of Interannual and Longer-Term Climatic Variations held at the University of Melbourne, Australia: December 8–12, 1986.  相似文献   
53.
This work presents sedimentological observations and interpretations on three detailed sections of the Pliocene Yutengping/Ailiaochiao formations, deposited in the early stages of collision in Taiwan. Seven facies associations record paleoenvironments of deposition ranging from nearshore to lower offshore with a strong influence of tidal reworking, even in shelfal sub-tidal environments, and a pro-delta setting characterized by mass-flows. The association of shallow facies of the upper offshore to lower shoreface with pro-delta turbidite facies sourced in the orogen to the east suggests a peculiar setting in which turbidite deposition occurred below wave base but on the shelf, in water depths of probably less than 100 m. This adds to the examples of “shallow turbidites” increasingly commonly found in foreland basins and challenges the classical view of a “deep” early underfilled foreland basin. Time series analysis on tidal rhythmites allow us to identify a yearly signal in the form of periodic changes of sand-supply, energy and bioturbation that suggests a marked seasonality possibly affecting precipitation and sediment delivery as well as temperature. The Taiwan foreland basin may also present a potentially high-resolution record in shallow sediments of the early installation of monsoonal circulation patterns in east Asia. We confirm partly the paleogeography during the early stages of collision in Taiwan: the Chinese margin displayed a pronounced non-cylindrical geometry with a large basement promontory to the west in place of the modern Taiwan mountain range. Collision in Taiwan may have happened at once along the whole length of the modern mountain range, instead of progressively from north to south as classically considered.  相似文献   
54.
We derive two new types of invariant that must be obeyed by the radial magnetic field at the core-mantle boundary if the hypothesis of frozen flux is valid and the fluid motion is either toroidal or tangentially geostrophic there. These general invariants incorporate specific invariants that are already known and can, in principle, be tested using magnetic data that cover an interval of time.  相似文献   
55.
Water Resources Implications of Global Warming: A U.S. Regional Perspective   总被引:7,自引:1,他引:7  
The implications of global warming for the performance of six U.S. water resource systems are evaluated. The six case study sites represent a range of geographic and hydrologic, as well as institutional and social settings. Large, multi-reservoir systems (Columbia River, Missouri River, Apalachicola-Chatahoochee-Flint (ACF) Rivers), small, one or two reservoir systems (Tacoma and Boston) and medium size systems (Savannah River) are represented. The river basins range from mountainous to low relief and semi-humid to semi-arid, and the system operational purposes range from predominantly municipal to broadly multi-purpose. The studies inferred, using a chain of climate downscaling, hydrologic and water resources systems models, the sensitivity of six water resources systems to changes in precipitation, temperature and solar radiation. The climate change scenarios used in this study are based on results from transient climate change experiments performed with coupled ocean-atmosphere General Circulation Models (GCMs) for the 1995 Intergovernmental Panel on Climate Change (IPCC) assessment. An earlier doubled-CO2 scenario from one of the GCMs was also used in the evaluation. The GCM scenarios were transferred to the local level using a simple downscaling approach that scales local weather variables by fixed monthly ratios (for precipitation) and fixed monthly shifts (for temperature). For those river basins where snow plays an important role in the current climate hydrology (Tacoma, Columbia, Missouri and, to a lesser extent, Boston) changes in temperature result in important changes in seasonal streamflow hydrographs. In these systems, spring snowmelt peaks are reduced and winter flows increase, on average. Changes in precipitation are generally reflected in the annual total runoff volumes more than in the seasonal shape of the hydrographs. In the Savannah and ACF systems, where snow plays a minor hydrological role, changes in hydrological response are linked more directly to temperature and precipitation changes. Effects on system performance varied from system to system, from GCM to GCM, and for each system operating objective (such as hydropower production, municipal and industrial supply, flood control, recreation, navigation and instream flow protection). Effects were generally smaller for the transient scenarios than for the doubled CO2 scenario. In terms of streamflow, one of the transient scenarios tended to have increases at most sites, while another tended to have decreases at most sites. The third showed no general consistency over the six sites. Generally, the water resource system performance effects were determined by the hydrologic changes and the amount of buffering provided by the system's storage capacity. The effects of demand growth and other plausible future operational considerations were evaluated as well. For most sites, the effects of these non-climatic effects on future system performance would about equal or exceed the effects of climate change over system planning horizons.  相似文献   
56.
57.
Indirect nitrous oxide (N2O) emissions produced by nitrogen (N) leaching into surface water and groundwater bodies are poorly understood in comparison to direct N2O emissions from soils. In this study, dissolved N2O concentrations were measured weekly in both lowland headwater streams and subsurface agricultural field drain discharges over a 2‐year period (2013–2015) in an intensive arable catchment, Norfolk, UK. All field drain and stream water samples were found to have dissolved N2O concentrations higher than the water–air equilibrium concentration, illustrating that all sites were acting as a net source of N2O emissions to the atmosphere. Soil texture was found to significantly influence field drain N2O dynamics, with mean concentrations from drains in clay loam soils (5.3 μg N L?1) being greater than drains in sandy loam soils (4.0 μg N L?1). Soil texture also impacted upon the relationships between field drain N2O concentrations and other water quality parameters (pH, flow rate, and nitrate (NO3) and nitrite (NO2) concentrations), highlighting possible differences in N2O production mechanisms in different soil types. Catchment antecedent moisture conditions influenced the storm event mobilisation of N2O in both field drains and streams, with the greatest concentration increases recorded during precipitation events preceded by prolonged wet conditions. N2O concentrations also varied seasonally, with the lowest mean concentrations typically occurring during the summer months (JJA). Nitrogen fertiliser application rates and different soil inversion regimes were found to have no effect on dissolved N2O concentrations, whereas higher N2O concentrations recorded in field drains under a winter cover crop compared to fallow fields revealed cover crops are an ineffective greenhouse gas emission mitigation strategy. Overall, this study highlights the complex interactions governing the dynamics of dissolved N2O concentrations in field drains and headwater streams in a lowland intensive agricultural catchment.  相似文献   
58.
The coupling of physics and biology was examined along a 160 km long transect running out from the north coast of South Georgia Island and crossing the Southern Antarctic Circumpolar Current Front (SACCF) during late December 2000. Surface and near surface potential TS properties indicated the presence of three water types: a near-shore group of stations characterised by water which became progressively warmer and fresher closer to South Georgia, an offshore grouping in which sea surface temperatures and those at the winter water level were relatively warm (1.8°C and 0.5°C, respectively), and a third in which surface and winter water temperatures were cooler and reflected the presence of the SACCF. The transect bisected the SACCF twice, revealing that it was flowing in opposite directions, north-westward closest to South Georgia and south-eastwards at its furthest point from the island. The innermost limb was a narrow intense feature located just off the shelf break in 2000–3500 m of water and in which rapid surface baroclinic velocities (up to 35 cm s−1) were encountered. Offshore in the outermost limb, shown subsequently to be a mesoscale eddy that had meandered south from the retroflected limb of the SACCF, flow was broader and slower with peak velocities around 20 cm s−1. Chlorophyll a biomass was generally low (<1 mg m−3) over much of the transect but increased dramatically in the region of the innermost limb of the SACCF, where a deepening of the surface mixed layer was coincident with a subsurface chlorophyll maximum (7.4 mg m−3) and elevated concentrations down to 100 m. The bloom was coincident with depleted nutrient concentrations, particularly silicate, nitrate and phosphate, and although ammonium concentrations were locally depleted the bloom lay within an elevated band (up to 1.5 mmol m−3) associated with the frontal jet. Increased zooplankton abundance, higher copepod body carbon mass and egg production rates all showed a strong spatial integrity with the front. The population structure of the copepods Calanoides acutus and Rhincalanus gigas at stations within the front suggested that rather than simply resulting from entrainment and concentration within the jet, increased copepod abundance was the result of development in situ. Estimates of bloom duration, based on silicate and carbon budget calculations, set the likely duration between 82 and 122 d, a figure supported by the development schedule of the two copepod species. Given this timescale, model outputs from FRAM and OCCAM indicated that particles that occurred on the north side of South Georgia in December would have been in the central-southern Scotia Sea 2–3 months earlier, probably in sea ice affected regions.  相似文献   
59.
Whither stratigraphy?   总被引:2,自引:0,他引:2  
There have been three revolutions in sedimentary geology. The first two began in the 1960s, consisting of the development of process-response sedimentary models and the application of plate-tectonic concepts to large-scale aspects of basin analysis. The third revolution, that of sequence stratigraphy, began in the late 1970s and helped to draw together the main results of the first two: the knowledge of autogenic processes learned through facies analysis, and the understanding of tectonism implicit in the unravelling of regional plate kinematics. Developments in the use of seismic-reflection data and the evaluation of a hypothesis of global eustasy provided considerable stimulation for stratigraphic research.Current developments in the field of sequence stratigraphy are focusing on three areas. (1) Elaboration of the sequence-architecture models for various configurations of depositional environment and sea-level history. (2) Exploration of various mechanisms for sequence generation, especially tectonism and orbital forcing. (3) Attempts to improve the level of precision in stratigraphic correlation and to refine the geological time scale, as a means to test the model of global eustasy.The growth in the power of computers and our knowledge of physical and chemical processes has led to the evolution of an entirely new way of evaluating earth history, termed quantitative dynamic stratigraphy. Mathematical modelling and numerical simulation of complex earth processes are now possible, and require the collection and integration of a wide array of quantitative and qualitative data sets. Applications include the study of the geodynamic evolution of sedimentary basins, modelling of stratigraphic sequences and global climates, studies of Milankovitch cycles (cyclostratigraphy) and simulation of fluid flow through porous media. The Global Sedimentary Geology Program has brought many of these areas of study together in multidisciplinary, global-scale studies of the sedimentary history of the earth. The results of these studies have wide application to many problems of importance to the human condition, including the past history of global climate change and other environmental concerns. The study of stratigraphy is at the centre of the new view of the earth, termed earth-systems science, which views earth as an ‘organic’ interaction between the lithosphere, biosphere, hydrosphere, and atmosphere.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号