The recent and rapid warming of the Arctic leads to thawing of permafrost, which influences and changes subsurface water-flow systems in such landscapes. This study explores the utility of catchments as “sentinels of change” by considering long-term discharge data from 17 stations on unregulated rivers in northern Sweden and analyzing trends in annual minimum discharge and recession flow characteristics. For the catchments considered, the annual minimum discharge has increased significantly (based on the Mann Kendall test at a 95 % confidence level) in nine of the catchments and decreased significantly in one catchment. Considering changes in recession-flow characteristics, seven catchments showed significant trends consistent with permafrost thawing while two catchments showed significant trends in the opposite direction. These results are mechanistically consistent with generic physically based modeling studies and the geological setting, as the catchments considered span the spatial limit of permafrost extent. This study illuminates the potential for using hydrologic observations to monitor changes in catchment-scale permafrost. Further, this opens the door for research to isolate the mechanisms behind the different trends observed and to gauge their ability to reflect actual permafrost conditions at the catchment scale. 相似文献
The Martian meteorites comprise mantle‐derived mafic to ultramafic rocks that formed in shallow intrusions and/or lava flows. This study reports the first in situ platinum‐group element data on chromite and ulvöspinel from a series of dunitic chassignites and olivine‐phyric shergottites, determined using laser‐ablation ICP‐MS. As recent studies have shown that Ru has strongly contrasting affinities for coexisting sulfide and spinel phases, the precise in situ analysis of this element in spinel can provide important insights into the sulfide saturation history of Martian mantle‐derived melts. The new data reveal distinctive differences between the two meteorite groups. Chromite from the chassignites Northwest Africa 2737 (NWA 2737) and Chassigny contained detectable concentrations of Ru (up to ~160 ppb Ru) in solid solution, whereas chromite and ulvöspinel from the olivine‐phyric shergottites Yamato‐980459 (Y‐980459), Tissint, and Dhofar 019 displayed Ru concentrations consistently below detection limit (<42 ppb). The relatively elevated Ru signatures of chromite from the chassignites suggest a Ru‐rich (~1–4 ppb) parental melt for this meteorite group, which presumably did not experience segregation of immiscible sulfide liquids over the interval of mantle melting, melt ascent, and chromite crystallization. The relatively Ru‐depleted signature of chromite and ulvöspinel from the olivine‐phyric shergottites may be the consequence of relatively lower Ru contents (<1 ppb) in the parental melts, and/or the presence of sulfides during the crystallization of the spinel phases. The results of this study illustrate the significance of platinum‐group element in situ analysis on spinel phases to decipher the sulfide saturation history of magmatic systems. 相似文献
NASA's Genesis mission revealed that the Sun is enriched in 16O compared to the Earth and Mars (the Sun's Δ17O, defined as δ17O–0.52×δ18O, is –28.4 ± 3.6‰; McKeegan et al. 2011). Materials as 16O‐rich as the Sun are extremely rare in the meteorite record. Here, we describe a Ca‐Al‐rich inclusion (CAI) from a CM chondrite that is as 16O‐enriched as the Sun (Δ17O = –29.1 ± 0.7‰). This CAI also has large nucleosynthetic anomalies in 48Ca and 50Ti (δ‐values are –8.1 ± 3.3 and –11.7 ± 2.4‰, respectively) and shows no clear evidence for incorporation of live 26Al; (26Al/27Al)0 = (0.03 ± 0.11) × 10–5. Due to their anomalous isotopic characteristics, the rare CAIs consistent with the Genesis value could be among the first materials that formed in the solar system. In contrast to the CAI studied here, the majority of CAIs formed in or interacted with a reservoir characterized by a Δ17O value near –23.5‰. Combined with 26Al‐26Mg systematics, the oxygen isotopic compositions of FUN (fractionation and unidentified nuclear effects), UN, and normal CAIs suggest that nebular conditions were favorable for solids to inherit this value for an extended period of time. Many later‐formed materials, such as chondrules, planetesimals, and terrestrial planets, formed in reservoirs with Δ17O near 0‰. The distribution could be easier to explain if the common CAI value of –23.5‰, which is consistent with the Genesis value within 3σ, represented the average composition of the protoplanetary disk. 相似文献
The response of a barotropic coastal ocean on a step-shaped continental shelf to a traveling sinusoidal wind stress forcing is predicted theoretically using a frictional force proportional to the alongshore current velocity. This theory is compared to a small set of observations from the northeast coast of Australia where a sudden widening of the continental shelf provides a geographical origin. The comparison is accomplished by means of frequency response functions relating alongshore wind stress with alongshore velocity. Amplitudes of the response functions are predicted to increase with alongshore distance equatorward and also to decrease with frequency at any location. These predictions are verified by the measurements. Predicted phase lags are generally less than about 30°, with observations agreeing with theory to within about 20°C. In general, the measurements provide reasonable evidence to support the theory of wind-forced continental shelf waves from a geographical origin. 相似文献
An analysis of the results of investigation of the G- 1 and W- 1 samples are given and differ from F. Chayes’ point of view.
Results of the samples can be evaluated by comparison of frequency-distribution properties of determinations for chemical
elements from different laboratories with some standard distribution, which gives the idea of a statistical model. The comparative
results indicate that oxides from minerals of the same density have positive correlations and that oxides from minerals of
different density have negative correlations. The different results therefore are not from the precision of analysis, but
rather from differentiation of sample powder particles by density and shape in the course of preparation. 相似文献
Samples of marine benthic invertebrates collected from two sites in the Antarctic have been analysed for both aliphatic and aromatic hydrocarbons in order to establish baseline concentrations for some classes of hydrocarbons.Samples from Signy Island, a pristine site, contained low concentrations of the hydrocarbons determined, whereas those from King Edward Cove, South Georgia, contained significantly higher concentrations. King Edward Cove has a known history of pollution from whaling operations.Platt & Mackie (1979) have suggested that the hydrocarbons in sediments from King Edward Cove are a result of the world-wide dissemination of the pyrolysis products of fossil fuels. Our work suggests, in contrast, that the hydrocarbons in the benthos are derived from local sources. 相似文献
The Cascadia subduction zone fault lies just off the Pacific coast of the USA and Canada. Although this fault has been seismically inactive over the written history of the Cascadia region, it has the potential to produce catastrophic earthquakes and tsunamis. A variety of dating methods have been used to show that the most recent Cascadia earthquake occurred in 1700. Among these methods is an informal analysis of oral traditions handed down by Native American peoples that appear to refer to a major earthquake in this region. A central difficulty in analyzing these narratives quantitatively is their use of a generation and other qualitative measures of time that have no fixed lengths. Here, these narratives are analyzed under an explicit statistical model of the lengths of these measures. The results raise a question about the previous conclusion that these narratives all refer to the most recent Cascadia earthquake.
The mass and distance functions of free-floating planets(FFPs) would give major insights into the formation and evolution of planetary systems, including any systematic differences between those in the disk and bulge. We show that the only way to measure the mass and distance of individual FFPs over a broad range of distances is to observe them simultaneously from two observatories separated by D ~ O(0.01 au)(to measure their microlens parallax π_E) and to focus on the finite-source point-lens(FSPL) events(which yield the Einstein radius θ_E). By combining the existing KMTNet 3-telescope observatory with a 0.3 m 4 deg~2 telescope at L2, of order 130 such measurements could be made over four years, down to about M ~ 6 M_⊕for bulge FFPs and M ~ 0.7 M_⊕for disk FFPs. The same experiment would return masses and distances for many bound planetary systems. A more ambitious experiment, with two 0.5 m satellites(one at L2 and the other nearer Earth) and similar camera layout but in the infrared, could measure masses and distances of sub-Moon mass objects, and thereby probe(and distinguish between) genuine sub-Moon FFPs and sub-Moon "dwarf planets" in exo-Kuiper Belts and exo-Oort Clouds. 相似文献
We introduce a processing technique which minimizes the 'stretching effects' of conventional NMO correction. Unlike conventional NMO, the technique implies constant normal moveout (CNMO) for a finite time interval of a seismic trace. The benefits of the proposed method include preservation of higher frequencies and reduction of spectral distortions at far offsets. The need for severe muting after the correction is reduced, allowing longer spreads for stack, velocity and AVO analysis. The proposed technique has been tested on model and real data. The method may improve the resolution of CMP stack and AVO attribute analysis. The only assumptions for this stretch-free NMO correction are (i) all time samples of a digital reflected wavelet at a particular offset have the same normal moveout, and (ii) reflection records have an interference nature. 相似文献