A first palynostratigraphic scheme of Upper Triassic deposits in northern Switzerland was established based on spore-pollen associations and dinoflagellate cyst records from the upper part of the Upper Triassic Klettgau Formation and the lower part of the Lower Jurassic Staffelegg Formation. Drill cores from the Adlerberg region (Basel Tabular Jura) and from Weiach (northern part of Canton Zurich) as well as from an outcrop at the Chilchzimmersattel (Basel Folded Jura) were studied and five informal palynological associations are distinguished. These palynological associations correlate with palynological association of the Central European Epicontinental Basin and the Tethyan realm and provide a stratigraphic framework for the uppermost Triassic sediments in northern Switzerland. Throughout the uppermost Triassic to Jurassic palynological succession a remarkable prominence of Classopollis spp. is observed. Besides Classopollis spp. the three Rhaetian palynological associations A to C from the Upper Triassic Belchen Member include typical Rhaetian spore-pollen and dinoflagellate taxa (e.g., Rhaetipollis germanicus, Geopollis zwolinskae, Rhaetogonyaulax rhaetica, and Dapcodinium priscum). Association B differs from association A in a higher relative abundance of the sporomorph taxa Perinopollenites spp. and the consistent occurrence of Granuloperculatipollis rudis and Ricciisporites tuberculatus. Spore diversity is highest in the late Rhaetian palynological association C and includes Polypodiisporites polymicroforatus. A Rhaetian age for the Belchen Member is confirmed by palynological associations A–C, but there is no record of the latest Rhaetian and the earliest Jurassic. In contrast to the Rhaetian palynological associations the Early Jurassic associations W and D include Pinuspollenites spp., Trachysporites fuscus (in association W), and Ischyosporites variegatus. In the view of the end-Triassic mass extinction and contemporaneous environmental changes the described palynofloral succession represents the pre-extinction phase (associations A and B) including a distinct transgression, the extinction phase (association C) associated with a regression, and the post-extinction phase (association W). 相似文献
A series of 7 growth experiments with Metallogenium sp. was conducted in a flow-through reactor (chemostat). The results demonstrate that Metallogenium sp. grows under simulated lake water conditions in the laboratory. Metallogenium reacted in the chemostat in the same way as a microorganism. The growth rates of the microorganism Metallogenium were determined. It can be concluded therefore that the maximal growth rate at a temperature of 15 °C was 0.7 d−1. 相似文献
Reliability analysis is inseparably connected with the formulation of failure scenarios, and common test statistics are based on specific assumptions. This is easily overlooked when processing observation differences. Poor failure identification performance and misleading pre-analysis results, mainly meaningless minimum detectable biases and external reliability measures, are the consequence. A reasonable failure scenario for use with differenced GNSS observations is formulated which takes into account that individual outliers in the original data affect more than one processed observation. The proper test statistics and reliability indicators are given for use with correlated observations and both batch processing and Kalman filtering. It is also shown that standardized residuals and redundancy numbers fail completely when used with double differenced observations.
Andreas WieserEmail: Phone: +43-316-8736323Fax: +43-316-8736820
Tracing leachates at landfills is usually carried out using either geophysical methods or chemical analyses of groundwater.
There are often problems with fingerprinting pollution sources or clarifying the spreading pattern due to a wide variety of
possibilities giving similar anomalies. The aims of the project were to evaluate the advantages of combining results from
multigeophysical modelling and statistical/chemical modelling in order to identify pollution sources and the spreading pattern
and to test a new technique for chemical fingerprinting. The project was carried out at a landfill in central Sweden using
geophysical measurements and modelling of CVES, GPR and VLF as well as chemical modelling using M3 (multivariate mixing and
mass balance calculations). The results indicate that by combining geophysical modelling and chemical calculations, the possibilities
of fingerprinting the origin of pollution as well as delineating the spreading pattern are significantly increased. 相似文献
Zircon, monazite and xenotime crystallized over a temperature interval of several hundred degrees at the magmatic to hydrothermal transition of the Sn and W mineralized Mole Granite. Magmatic zircon and monazite, thought to have crystallized from hydrous silicate melt, were dated by conventional U–Pb techniques at an age of 247.6 ± 0.4 and 247.7 ± 0.5 Ma, respectively. Xenotime occurring in hydrothermal quartz is found to be significantly younger at 246.2 ± 0.5 Ma and is interpreted to represent hydrothermal growth. From associated fluid inclusions it is concluded that it precipitated from a hydrothermal brine ≤ 600 °C, which is below the accepted closure temperature for U–Pb in this mineral. These data are compatible with a two-stage crystallization process: precipitation of zircon and monazite as magmatic liquidus phases in deep crustal magma followed by complete crystallization and intimately associated Sn–W mineralization after intrusion of the shallow, sill-like body of the Mole Granite. Later hydrothermal formation of monazite in a biotite–fluorite–topaz reaction rim around a mineralized vein was dated at 244.4 ± 1.4 Ma, which distinctly postdates the Mole Granite and is possibly related to a younger hidden intrusion and its hydrothermal fluid system.
Obtaining precise age data for magmatic and hydrothermal minerals of the Mole Granite is hampered by uncertainties introduced by different corrections required for multiple highly radiogenic minerals crystallising from evolved hydrous granites, including 230Th disequilibrium due to Th/U fractionation during monazite and possibly xenotime crystallization, variable Th/U ratios of the fluids from which xenotime was precipitating, elevated contents of common lead, and post-crystallization lead loss in zircon, enhanced by the fluid-saturated environment. The data imply that monazite can also survive as a liquidus phase in protracted magmatic systems over periods of 106 years. The outlined model is in agreement with prominent chemical core-rim variation of the zircon. 相似文献
Sudden collapse of the Quaternary soil to form sinkholes on the order of meters and tens of meters has been a geologic phenomenon within living memory in a localized area north of Lake Chiemsee in Southeast Germany. Failing a satisfying explanation, a relation with an undefined glaciation process has always been proposed. Excavations and geophysical measurements at three newly affected sites show underground features such as prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Since strong earthquakes can reasonably be excluded to have affected the area under discussion, it has been suggested that the observed widespread liquefaction is related with the recently proposed Holocene Chiemgau meteorite impact event. Except for one earlier proposed but unassertive relation between impact and liquefaction, the obviously direct association of both processes in the Chiemgau area emphasizes that observed paleoliquefaction features need not necessarily have originated solely from paleoseismicity but can provide a recognizable regional impact signature. 相似文献
We use a kinetic model of a metamorphic system to study the effect of competing rates of reaction, fluid injection, and heating on the evolution of the reaction pathway in temperature/composition space at constant pressure. We show that for rocks in contact with mixed volatile (e.g., CO2-H2O) fluids the reaction path may be quite different from what is expected from equilibrium-based petrologic models. Equilibrium-based models, used to understand the development of rock systems undergoing mineral reactions during a metamorphic event, rely on the Gibbs phase rule and only consider stable phases. For constant pressure, the temperature-composition paths follow univariant curves and significant reactions may occur at invariant points. By contrast, the more general kinetic treatment is not constrained by equilibrium, although with the proper competing rates equilibrium is a possible endmember of the kinetic approach. The deviation from equilibrium depends on the competing rates of reaction, heating, and fluid injection. A key element required by the kinetic approach is the inclusion of metastable reactions in the formulation, whereas such reactions are irrelevant for equilibrium-based models. Metastable reactions are often involved in a complex interplay with common prograde stable metamorphic reactions. We present model results for the well-studied CaO-MgO-SiO2-CO2-H2O (CMS) system to show how the system evolves under kinetic control. Our simulations and discussion focus on the behavior of the CMS system under a number of closed and open system conditions. Special attention is paid to closed system behavior in the vicinity of the (first) isobaric invariant point (with Dol, Qtz, Tlc, Cal, and Tr). Also, for open systems with massive fluid infiltration we consider heating rates varying from contact to regional metamorphic conditions. For some geologically reasonable rates of reactions, heating, and fluid injection, our results demonstrate that equilibrium conditions may be significantly overstepped in metamorphic systems. We used overall mineral reactions in this model with rates based on experimental results. Future models could rely on more fundamental dissolution and precipitation reactions. Such an extension would require additional kinetic rate data, as well as mineral solubilities in mixed volatile fluids.Editorial responsibility: J. Hoefs 相似文献
We report experimentally determined 1 atm olivine/melt DNa partitioning data for low fO2, a variety of melt compositions and a temperature range of 1325-1522 °C. We demonstrated that high-current electron microprobe analyses (EPMA, I = 500 nA, 600 s on the peak) allow quantitative determination of Na2O in olivine down to ∼10 μg/g. The mean olivine/melt DNa from 12 experimental runs is 0.0031 ± 0.0007 (1σ). This is the recommended value for low pressures and a wide range of natural compositions.This result is applied to the problem of the origin of alkalis in chondrules and the formation of chondritic refractory forsterite grains. The data on Semarkona (LL3.0) chondrules show that Na2O is primordial and was present during olivine crystallization. For refractory forsterite grains from Murchison (CM2), we demonstrate that high CaO contents are not a result of equilibration with Na2O-rich melts, but require high activities of CaO during their formation. 相似文献