首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   15篇
  国内免费   7篇
测绘学   15篇
大气科学   24篇
地球物理   140篇
地质学   228篇
海洋学   76篇
天文学   126篇
综合类   1篇
自然地理   70篇
  2021年   9篇
  2020年   8篇
  2019年   9篇
  2018年   14篇
  2017年   9篇
  2016年   14篇
  2015年   18篇
  2014年   15篇
  2013年   58篇
  2012年   21篇
  2011年   32篇
  2010年   26篇
  2009年   27篇
  2008年   31篇
  2007年   26篇
  2006年   22篇
  2005年   18篇
  2004年   19篇
  2003年   20篇
  2002年   16篇
  2001年   14篇
  2000年   13篇
  1999年   19篇
  1998年   7篇
  1997年   16篇
  1996年   5篇
  1995年   6篇
  1994年   12篇
  1993年   11篇
  1992年   5篇
  1991年   6篇
  1990年   11篇
  1989年   4篇
  1988年   7篇
  1987年   10篇
  1986年   6篇
  1985年   6篇
  1984年   9篇
  1983年   9篇
  1982年   9篇
  1981年   11篇
  1980年   10篇
  1979年   8篇
  1978年   4篇
  1977年   4篇
  1976年   6篇
  1975年   10篇
  1974年   8篇
  1973年   4篇
  1967年   3篇
排序方式: 共有680条查询结果,搜索用时 0 毫秒
11.
The recent discovery of localised intense magnetic fields in the solar photosphere is one of the major surprises of the past few years. Here we consider the theoretical nature of small amplitude motions in such an intense magnetic flux tube, within which the field strength may reach 2 kG. We give a systematic derivation of the governing expansion equations for a vertical, slender tube, taking into account the dependence upon height of the buoyancy, compressibility and magnetic forces. Several special cases (e.g., the isothermal atmosphere) are considered as well as a more realistic, non-isothermal, solar atmosphere. The expansion procedure is shown to give good results in the special case of a uniform basic-state (in which gravity is negligible) and for which a more exact treatment is possible.The form of both pressure and velocity perturbations within the tube is discussed. The nature of pressure perturbations depends upon a critical transition frequency, p , which in turn is dependent upon depth, field strength, pressure and density in the basic (unperturbed) state of the tube. At a given depth in the tube pressure oscillations are possible only for frequencies greater than p for frequencies below p exponentially decaying (evanescent) pressure modes occur. In a similar fashion the nature of motions within the flux tube depends upon a transition frequency, v . At a given depth within the tube vertically propagating waves are possible only for frequencies greater than v ; for frequencies below v exponentially decaying (evanscent) motions occur.The dependence of both v and p on depth is determined for each of the special cases, and for a realistic solar atmosphere. It is found that the use of an isothermal atmosphere, instead of a more realistic temperature profile, may well give misleading results.For the solar atmosphere it is found that v is zero at about 12 km above optical depth 5000= 1, thereafter rising to a maximum of 0.04 s–1 at some 600 km above 5000 = 1. Below 5000 = 1, in the convection zone, v has a maximum of 0.013 s–1. The transition frequency, p , for the pressure perturbations, is peaked at 0.1 s–1 just below 5000 = 1, falling to a minimum of 0.02 s–1 at about one scale-height deeper in the tube  相似文献   
12.
The Zambian Copperbelt forms the southeastern part of the 900-km-long Neoproterozoic Lufilian Arc and contains one of the world’s largest accumulations of sediment-hosted stratiform copper mineralization. The Nchanga deposit is one of the most significant ore systems in the Zambian Copperbelt and contains two major economic concentrations of copper and cobalt, hosted within the Lower Roan Group of the Katangan Supergroup. A Lower Orebody (copper only) and Upper Orebody (copper and cobalt) occur towards the top of arkosic units and within the base of overlying shales. The sulfide mineralogy includes pyrite, bornite, chalcopyrite, and chalcocite, although in the Lower Orebody, sulfide phases are partially or completely replaced by malachite and copper oxides. Carrollite is the major cobalt-bearing phase and is restricted to fault-propagation fold zones within a feldspathic arenite. Hydrothermal alteration minerals include dolomite, phlogophite, sericite, rutile, quartz, tourmaline, and chlorite. Quartz veins from the mine sequence show halite-saturated fluid inclusions, ranging from ~31 to 38 wt% equivalent NaCl, with homogenisation temperatures (ThTOT) ranging between 140 and 180°C. Diagenetic pyrites in the lower orebody show distinct, relatively low δ 34S, ranging from −1 to −17‰ whereas arenite- and shale-hosted copper and cobalt sulfides reveal distinctly different δ 34S from −1 to +12‰ for the Lower Orebody and +5 to +18‰ for the Upper Orebody. There is also a clear distinction between the δ 34S mean of +12.1±3.3‰ (n=65) for the Upper Orebody compared with +5.2±3.6‰ (n=23) for the Lower Orebody. The δ 13C of dolomites from units above the Upper Orebody give δ 13C values of +1.4 to +2.5‰ consistent with marine carbon. However, dolomite from the shear-zones and the alteration assemblages within the Upper Orebody show more negative δ 13C values: −2.9 to −4.0‰ and −5.6 to −8.3‰, respectively. Similarly, shear zone and Upper Orebody dolomites give a δ 18O of +11.7 to +16.9‰ compared to Lower Roan Dolomites, which show δ 18O of +22.4 to +23.0‰. Two distinct structural regimes are recognized in the Nchanga area: a weakly deformed zone consisting of basement and overlying footwall siliciclastics, and a moderate to tightly folded zone of meta-sediments of the Katangan succession. The fold geometry of the Lower Roan package is controlled by internal thrust fault-propagation folds, which detach at the top of the lowermost arkose or within the base of the overlying stratigraphy and show vergence towards the NE. Faulting and folding are considered to be synchronous, as folding predominantly occurred at the tips of propagating thrust faults, with local thrust breakthrough. The data from Nchanga suggests a strong link between ore formation and the development of structures during basin inversion as part of the Lufilian Orogeny. Sulfides tend to be concentrated within arenites or coarser-grained layers within shale units, suggesting that host-rock porosity and possibly permeability played a role in ore formation. However, sulfides are also commonly orientated along, but not deformed by, a tectonic fabric or hosted within small fractures that suggest a significant role for deformation in the development of the mineralization. The ore mineralogy, hydrothermal alteration, and stable isotope data lend support to models consistent with the thermochemical reduction of a sulfate- (and metal) enriched hydrothermal fluid, at the site of mineralization. There is no evidence at Nchanga for a contribution of bacteriogenic sulfide, produced during sedimentation or early diagenesis, to the ores.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Editorial handling: H. Frimmel  相似文献   
13.
14.
15.
16.
A seismic re fraction/wide-angle reflection profile is analysed for the presence of correlated events ('phases'). The correlation problem is formulated in terms of temporally, spatially and frequency-local complex covariances. For robustness, the method concentrates on phase rather than amplitude information. This allows a computationally efficient algorithm that can make allowance for signal correlation length and can model curved wavefronts. A statistical test based on residual phase misfit across the analysed subarray is used to assess the probability that a detected event represents a real correlated signal.
With our chosen analysis parameters and confidence level (over 99.9 per cent). 1222 events were detected in the data. Using simple techniques based on 1-D earth models, detected events are associated with a small number of particular wave types. In this way, we have succeeded in classifying almost 95 per cent of the detected events. Those that remain describe those components of the data that are inconsistent with our simple ray paths in the 1-D assumption and with our prescribed tolerance. These include reverberations, near-surface guided waves and reflected waves from strongly laterally inhomogeneous structures. According to our modelling, about 25 per cent of the detected events are consistent with simple P -wave reflected energy, and these are to a very large extent (over 85 per cent) distinct from all the other wave-type models we have used. A direct mapping of the detected events into the offset-depth domain reveals dear internal and external consistencies among the detections for the various wave types. Estimated earth structure is consistent with models from previous analyses based on much larger data sets.
We have thus succeeded in extracting correlated events from the data and decomposing these, approximately but meaningfully, into distinct classes (ray paths)  相似文献   
17.
18.
Nepheline-bearing gneisses from the 75 km2 Tambani body in the Mozambique Belt of southern Malawi, are miaskitic biotite-nepheline monzodiorites, reflecting an absence of K-feldspar, alkali amphiboles or pyroxenes, and contain euhedral zircon megacrysts up to 5 cm across. The zircons contain U = 1–1,860 ppm, Th = 0–2,170 ppm and Y = 400–1,100 ppm, and very low concentrations of all other measured trace elements except Hf (HfO2 = 0.53–0.92 wt. %). Cathodoluminescence images reveal oscillatory sector growth zoning and no evidence for xenocrystic cores, indicating that the zircons represent primary magmatic crystallization products that have survived amphibolite grade metamorphism. U-Pb isotopic analyses (by TIMS) yield an upper intercept age of 730 ± 4 Ma (MSWD = 1.7), which we interpret as the time of magmatic crystallization of the zircons. This is coincident with 11 SHRIMP spot analyses, which yield a mean age of 729 ± 7 Ma (MSWD = 0.37). Metamorphism, at 522 ± 17 Ma as suggested by monazite, caused partial Pb-loss during local recrystallization of zircon. Lu-Hf isotopic data for three whole-rock samples of nepheline-bearing gneiss are collinear with those for zircon megacrysts, and correspond to an age of 584 ± 17 Ma (MSWD = 0.37. We interpret the Lu-Hf array to represent a mixing line defined by the Hf isotopic signature of primary zircon and that of the rock-forming minerals reset during metamorphic (re-)crystallization; hence the 584 Ma age is likely geologically meaningless. Given the well-defined association of nepheline syenites (and phonolitic volcanic equivalents) with continental rifting, we suggest that the Tambani body represents a magmatic product formed at 730 Ma during the break-up of the Rodinia supercontinent. The 522 Ma age is akin to other Pan-African metamorphic ages that record collisional suturing events during the final assembly of Gondwana. Zircon-bearing nepheline gneisses thus preserve a record of intra-continental rifting and of continental collision in southern Malawi.  相似文献   
19.
Concern about security of supply of critical elements used in new technologies, such as the Rare Earth Elements (REE), means that it is increasingly important to understand the processes by which they are enriched in crustal settings. High REE contents are found in syenite-dominated alkaline complexes intruded along the Moine Thrust Zone, a major collisional zone in north-west Scotland. The most northerly of these is the Loch Loyal Syenite Complex, which comprises three separate intrusions. One of these, the Cnoc nan Cuilean intrusion, contains two mappable zones: a Mixed Syenite Zone in which mafic melasyenite is mixed and mingled with leucosyenite and a Massive Leucosyenite Zone. Within the Mixed Syenite Zone, hydrothermal activity is evident in the form of narrow altered veins dominated by biotite and magnetite; these are poorly exposed and their lateral extent is uncertain. The REE mineral allanite is relatively abundant in the melasyenite and is extremely enriched in the biotite–magnetite veins, which have up to 2 % total rare earth oxides in bulk rock analyses. An overall model for development of this intrusion can be divided into three episodes: (1) generation of a Light Rare Earth Element (LREE)-enriched parental magma due to enrichment of the mantle source by subduction of pelagic carbonates; (2) early crystallisation of allanite in melasyenite, due to the saturation of the magma in the LREE; and (3) hydrothermal alteration, in three different episodes identified by petrography and mineral chemistry, generating the intense enrichment of REE in the biotite–magnetite veins. Dating of allanite and titanite in the biotite–magnetite veins gives ages of c. 426 Ma, overlapping with previously published crystallisation ages for zircon in the syenite.  相似文献   
20.
Major hydrological variations associated with glacial and interglacial climates in North Africa and the Levant have been related to Middle Paleolithic occupations and dispersals, but suitable archaeological sites to explore such relationships are rare on the Arabian Peninsula. Here we report the discovery of Middle Paleolithic assemblages in the Nefud Desert of northern Arabia associated with stratified deposits dated to 75,000 years ago. The site is located in close proximity to a substantial relict lake and indicates that Middle Paleolithic hominins penetrated deeply into the Arabian Peninsula to inhabit landscapes vegetated by grasses and some trees. Our discovery supports the hypothesis of range expansion by Middle Paleolithic populations into Arabia during the final humid phase of Marine Isotope Stage 5, when environmental conditions were still favorable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号