首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   9篇
  国内免费   1篇
测绘学   7篇
大气科学   16篇
地球物理   33篇
地质学   67篇
海洋学   16篇
天文学   26篇
自然地理   27篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   7篇
  2016年   9篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   11篇
  2011年   4篇
  2010年   12篇
  2009年   17篇
  2008年   16篇
  2007年   15篇
  2006年   9篇
  2005年   7篇
  2004年   6篇
  2003年   5篇
  2002年   7篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1971年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
91.
92.
93.
94.
Alison Porter 《Area》2000,32(1):41-48
Summary This paper describes how people with a range of physical impairments use the 'disabled role' to enable them to make local journeys in Swansea. It examines the processes by which interaction between people and social institutions serves to overcome transport disability and to reinforce prevailing meanings and structures of disability.  相似文献   
95.
The impacts of climate change on future river flows are a growing concern. Typically, impacts are simulated by driving hydrological models with climate model ensemble data. The U.K. Climate Projections 2009 (UKCP09) provided probabilistic projections, enabling a risk-based approach to decision-making under climate change. Recently, an update was released—UKCP18—so there is a need for information on how impacts may differ. The probabilistic projections from UKCP18 and UKCP09 are here applied using the change factor method with catchment-based hydrological modelling for 10 catchments across England. Projections of changes in median, mean, high, and low flows are made for the 2050s, using the A1B emissions scenario from UKCP09 and UKCP18 as well as the RCP4.5 and RCP8.5 emissions scenarios from UCKP18. The results show that, in all catchments for all flow measures, the central estimate of change under UKCP18 is similar to that from UKCP09 (A1B emissions). However, the probabilistic uncertainty ranges from UKCP18 are, in all cases, greater than from UKCP09, despite UKCP18 having a smaller ensemble size than UKCP09. Although there are differences between the central estimates of change using UKCP18 RCP4.5, RCP8.5 and A1B emissions, there is considerable overlap in the uncertainty ranges. The results suggest that existing assessments of hydrological impacts remain relevant, though it will be necessary to evaluate sensitive decisions using the latest projections. The analysis will aid development of advice to users of current guidance based on UKCP09 and help make decisions about the prioritization of further hydrological impacts work using UKCP18, which should also apply other products from UKCP18 like the 12-km regional data.  相似文献   
96.
Many actions to reduce GHG emissions have wider impacts on health, the economy, and the environment, beyond their role in mitigating climate change. These ancillary impacts can be positive (co-benefits) or negative (conflicts). This article presents the first quantitative review of the wider impacts on health and the environment likely to arise from action to meet the UK's legally-binding carbon budgets. Impacts were assessed for climate measures directed at power generation, energy use in buildings, and industry, transport, and agriculture. The study considered a wide range of health and environmental impacts including air pollution, noise, the upstream impacts of fuel extraction, and the lifestyle benefits of active travel. It was not possible to quantify all impacts, but for those that were monetized the co-benefits of climate action (i.e. excluding climate benefits) significantly outweigh the negative impacts, with a net present value of more than £85 billion from 2008 to 2030. Substantial benefits arise from reduced congestion, pollution, noise, and road accidents as a result of avoided journeys. There is also a large health benefit as a result of increased exercise from walking and cycling instead of driving. Awareness of these benefits could strengthen the case for more ambitious climate mitigation action.

Policy relevance

This article demonstrates that actions to mitigate GHG emissions have significant wider benefits for health and the environment. Including these impacts in cost–benefit analysis would strengthen the case for the UK (and similar countries) to set ambitious emissions reduction targets. Understanding co-benefits and trade-offs will also improve coordination across policy areas and cut costs. In addition, co-benefits such as air quality improvements are often immediate and local, whereas climate benefits may occur on a longer timescale and mainly in a distant region, as well as being harder to demonstrate. Dissemination of the benefits, along with better anticipation of trade-offs, could therefore boost public support for climate action.  相似文献   

97.
A detailed study of arsenic cycling in the Huon estuary, south-east Tasmania, was undertaken October 1996–September 1998. Arsenic species data were obtained during eight 3-monthly spatial surveys, and a time-series study at a single site in the estuary over a 7-mo period. The data have been correlated with other chemical measurements, including nutrients, salinity, and dissolved oxygen, and also with biological information about the microalgal species present. In the Huon estuary, arsenic cycling is almost entirely biologically influenced. The seasonal cycle of reduced, methylated, and hydride refractory arsenic species was similar to that found in other temperate estuaries of the Northern hemisphere, with greatest production occurring during summer months. Inorganic arsenic concentrations in the Huon River were very low [As(V+III): 0.023–0.057 μg l−1], even when compared with other pristine systems. Concentrations at the seaward end of the estuary were typical of those found in unpolluted coastal seawater. The behavior of As(V+III) in the estuary was nearly conservative in all surveys except those conducted during summer (February), when significant depletion was observed at higher salinity. During these surveys, up to 60% of inorganic arsenic was apparently depleted from the water column with only a small proportion (20–25%) recycled as methylated and UV-labile arsenic species. This was particularly the case in a high salinity side-arm of the estuary, Port Cygnet. The extent of inorganic arsenic depletion correlated with cell numbers of the phytoplanktonPseudo-nitzschia. The fate of the missing inorganic arsenic is unclear, but the co-existence ofPseudo-nitzschia blooms with commercial mussel leases in Port Cygnet could provide one explanation for the loss.  相似文献   
98.
Arsenic is a prevalent contaminant at US Superfund sites where remediation by pump and treat systems is often complicated by slow desorption of As from Fe and Al (hydr)oxides in aquifer solids. Chemical amendments that either compete with As for sorption sites or dissolve Fe and Al (hydr)oxides can increase As mobility and improve pump and treat remediation efficiency. The goal of this work was to determine optimal amendments for improving pump and treat at As contaminated sites such as the Vineland Chemical Co. Superfund site in southern New Jersey. Extraction and column experiments were performed using As contaminated aquifer solids (81 ± 1 mg/kg), site groundwater, and either phosphate (NaH2PO4·H2O) or oxalic acid (C2H2O4·2H2O). In extraction experiments, phosphate mobilized between 11% and 94% of As from the aquifer solids depending on phosphate concentration and extraction time (1 mM–1 M; 1–24 h) and oxalic acid mobilized between 38% and 102% depending on oxalic acid concentration and extraction time (1–400 mM; 1–24 h). In column experiments, phosphate additions induced more As mobilization in the first few pore volumes but oxalic acid was more effective at mobilizing As overall and at lower amendment concentrations. At the end of the laboratory column experiments, 48% of As had been mobilized from the aquifer sediments with 100 mM phosphate and 88% had been mobilized with 10 mM oxalic acid compared with 5% with ambient groundwater alone. Furthermore, simple extrapolations based on pore volumes suggest that chemical treatments could lower the time necessary for clean up at the Vineland site from 600 a with ambient groundwater alone to potentially as little as 4 a with 10 mM oxalic acid.  相似文献   
99.
Additions of the low occurrence stable isotopes 61Ni, 65Cu, and 68Zn were used as tracers to determine the exchange kinetics of metals between dissolved and particulate forms in laboratory studies of natural water and suspended sediments from South San Francisco Bay, CA. Dissolved metal isotope additions were made so that the isotope ratios (rather than total metal partitioning) were significantly altered from initial ambient conditions. Dissolved metal concentrations were determined using an organic ligand sequential extraction technique followed by analysis with high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS). Exchangeable particulate concentrations were extracted using a 20% acetic acid leach followed by determination using HR-ICPMS. Equilibrium and kinetic sorption parameters were quantified according to a general model for trace metal partitioning assuming pseudo-first-order kinetics. Partition coefficients (KD) were tracked as a function of time over the fortnight experiment. For Ni, Cu, and Zn the initial ambient KD values were found to be 103.65, 103.88, and 104.52 L kg−1, respectively. As a result of the dissolved metal isotope additions, the partition coefficients for all three metals dropped and then increased back to near ambient KD values after 14 days. Curve-fitting concentration versus time profiles from both dissolved and exchangeable particulate data sets allowed determination of kinetic rate constants. The best estimates of forward and backward kinetic rate constants for Ni, Cu, and Zn respectively are k′f = 0.03, 0.07, 0.12 d−1 and kb = 0.13, 0.12, 0.15 d−1. These results predict that sorption equilibria in South Bay should be reached on the order of a month for Ni, on the order of 3 weeks for Cu, and on the order of 2 weeks for Zn. Together, the dissolved and exchangeable particulate data indicate more sluggish sorption kinetics for Ni than for Cu and Zn and suggest that different chemical forms control the speciation of these three metals in South Bay. Order of magnitude metal sorption exchange rates were estimated using these kinetic results. These calculations indicate that sorption exchange between dissolved and suspended particulate phases can cause dynamic internal cycling of these metals in South San Francisco Bay.  相似文献   
100.
Theoretical analysis and computational simulations have been carried out to investigate how medium and pore‐fluid compressibility affects the chemical‐dissolution front propagation, which is associated with a fully‐coupled nonlinear problem between porosity, pore‐fluid pressure, pore‐fluid density and reactive chemical‐species transport within a deformable and fluid‐saturated porous medium. When the fully‐coupled nonlinear system is in a subcritical state, some analytical solutions have been derived for a special case, in which the ratio of the equilibrium concentration to the solid molar density of the chemical species is approaching zero. To investigate the effect of either medium compressibility or pore‐fluid compressibility on the evolutions of chemical dissolution fronts in supercritical chemical dissolution systems, numerical algorithms and procedures have been also proposed. The related theoretical and numerical results have demonstrated that: (i) not only can pore‐fluid compressibility affect the propagating speeds of chemical dissolution fronts in both subcritical and supercritical systems, but also it can affect the growth and amplitudes of irregular chemical dissolution fronts in supercritical systems; (ii) medium compressibility may have a little influence on the propagating speeds of chemical dissolution fronts, but it can have significant effects on the growth and amplitudes of irregular chemical dissolution fronts in supercritical systems; and (iii) both medium and pore‐fluid compressibility may stabilize irregular chemical‐dissolution‐fronts in supercritical chemical dissolution systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号