首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1718篇
  免费   73篇
  国内免费   50篇
测绘学   59篇
大气科学   134篇
地球物理   364篇
地质学   603篇
海洋学   118篇
天文学   412篇
综合类   11篇
自然地理   140篇
  2024年   10篇
  2023年   14篇
  2022年   10篇
  2021年   38篇
  2020年   42篇
  2019年   39篇
  2018年   81篇
  2017年   68篇
  2016年   79篇
  2015年   74篇
  2014年   79篇
  2013年   113篇
  2012年   67篇
  2011年   100篇
  2010年   81篇
  2009年   91篇
  2008年   88篇
  2007年   91篇
  2006年   76篇
  2005年   59篇
  2004年   64篇
  2003年   49篇
  2002年   48篇
  2001年   36篇
  2000年   44篇
  1999年   34篇
  1998年   21篇
  1997年   23篇
  1996年   19篇
  1995年   11篇
  1994年   13篇
  1993年   11篇
  1992年   15篇
  1991年   8篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   7篇
  1986年   10篇
  1985年   12篇
  1984年   7篇
  1983年   9篇
  1982年   5篇
  1981年   7篇
  1980年   7篇
  1979年   8篇
  1978年   7篇
  1977年   5篇
  1976年   5篇
  1973年   4篇
排序方式: 共有1841条查询结果,搜索用时 15 毫秒
201.
Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10?10) than for solute transport (10?6). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only.  相似文献   
202.
Renewed seismic activity of Cotopaxi, Ecuador, began in January 2001 with the increased number of long-period (LP) events, followed by a swarm of volcano-tectonic (VT) earthquakes in November 2001. In late June 2002, the activity of very-long-period (VLP) (2 s) events accompanying LP (0.5–1 s) signals began beneath the volcano. The VLP waveform was characterized by an impulsive signature, which was accompanied by the LP signal showing non-harmonic oscillations. We observed temporal changes of both the VLP and LP signals from the beginning until September 2003: The VLP signal gradually disappeared and the LP signal characterized by decaying harmonic oscillations became dominant. Assuming possible source geometries, we applied a waveform inversion method to the observed waveforms of the largest VLP event. Our inversion and particle motion analyses point to volumetric changes of a sub-vertical crack as the VLP source, which is located at a depth of 2–3 km beneath the northeastern flank. The spectral analysis of the decaying harmonic oscillations of LP events shows frequencies between 2.0 and 3.5 Hz, with quality factors significantly above 100. The increased VT activity and deformation data suggest an intrusion of magma beneath the volcano. A release of gases with small magma particles may have repetitively occurred due to the pressurization, which was caused by sustained bubble growth at the magma ceiling. The released particle-laden gases opened a crack above the magma system and triggered the resonance of the crack. We interpret the VLP and LP events as the gas-release process and the resonance of the crack, respectively.  相似文献   
203.
The degree of glacial modification in small catchments along the eastern Sierra Nevada, California, controls the timing and pattern of sediment flux to the adjacent fans. There is a close relationship between the depth of fan‐head incision and the pattern and degree of Late Pleistocene catchment erosion by valley glaciers; catchments with significant glacial activity are associated with deeply incised fan heads, whereas fans emerging from glacially unmodified catchments are unincised. We suggest that the depth of fan‐head incision is controlled by the potential for sediment storage during relatively dry ice‐free periods, which in turn is related to the downstream length of the glacially modified valley and creation of accommodation through valley floor slope lowering and glacial valley overdeepening and widening. Significant storage in glacially modified basins during ice‐free periods leads to sediment supply‐limited conditions at the fan head and causes deep incision. In contrast, a lack of sediment trapping allows quasi‐continuous sediment supply to the fan and prevents incision of the fan head. Sediment evacuation rates should thus show large variations in glacially modified basins, with major peaks during glacial and lows during interglacial or ice‐free periods, respectively. In contrast, sediment removal from glacially unmodified catchments in this type of setting should be free of this effect, and will be dominated instead by short‐term variations, modulated for example by changes in vegetation cover or storm frequency. This distinction may help improve our understanding of long‐term sediment yields as a measure of erosional efficiency. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
204.
In this study, the effect of the thickness of a planar jet on the erosion depth when the jet impinges on a surface composed of cohesive soil was analytically and numerically evaluated. The results showed that the erosion depth was practically independent of the nozzle thickness for erosion depths shallower than the potential core length (i.e. the region of the jet in which the central flow velocity is the same as the nozzle velocity). The relation between nozzle thickness and erosion depth was non-linear with continuously variable slope for erosion depths deeper than the potential core length. Finally, the relation was approximately linear when the erosion depth converged to the equilibrium erosion depth. The findings of this study indicate that direct and fast prediction of the erosion depth in the field is possible using the data from a small scale soil erosion test with similar flow velocities.  相似文献   
205.
Nishinoshima, a submarine volcano in the Ogasawara Arc, approximately 1 000 km south of Tokyo, Japan, suddenly erupted in November 2013, after 40 years of dormancy. Olivine‐bearing phenocryst‐poor andesites found in older submarine lavas from the flanks of the volcano have been used to develop a model for the genesis of andesitic lavas from Nishinoshima. In this model, primary andesite magmas originate directly from the mantle as a result of shallow and hydrous melting of plagioclase peridotites. Thus, it only operates beneath Nishinoshima and submarine volcanoes in the Ogasawara Arc and other oceanic arcs, where the crust is thin. The primary magma compositions have changed from basalt, produced at considerable depth, to andesite, produced beneath the existing thinner crust at this location in the arc. This reflects the thermal and mechanical evolution of the mantle wedge and the overlying lithosphere. It is suggested that continental crust‐like andesitic magma builds up beneath submarine volcanoes on thin arc lithosphere today, and has built up beneath such volcanoes in the past. Andesites produced by this shallow and hydrous melting of the mantle could accumulate through collisions of plates to generate continental crust.  相似文献   
206.
We investigate the spatial and temporal englacial and subglacial processes associated with a temperate glacier resting on a deformable bed using the unique Glacsweb wireless in situ probes (embedded in the ice and the till) combined with other techniques [including ground penetrating radar (GPR) and borehole analysis]. During the melt season (spring, summer and autumn), high surface melt leads to high water pressures in the englacial and subglacial environment. Winter is characterized by no surface melting on most days (‘base’) apart from a series of positive degree days. Once winter begins, a diurnal water pressure cycle is established in the ice and at the ice/sediment interface, with direct meltwater inputs from the positive degree days and a secondary slower englacial pathway with a five day lag. This direct surface melt also drives water pressure changes in the till. Till deformation occurred throughout the year, with the winter rate approximately 60% that of the melt season. We were able to show the bed comprised patches of till with different strengths, and were able to estimate their size, relative percentage and temporal stability. We show that the melt season is characterized by a high pressure distributed system, and winter by a low pressure channelized system. We contrast this with studies from Greenland (overlying rigid bedrock), where the opposite was found. We argue our results are typical of soft bedded glaciers with low englacial water content, and suggest this type of glacier can rapidly respond to surface-driven melt. Based on theoretical and field results we suggest that the subglacial hydrology comprises a melt season distributed system dominated by wide anastomosing broad flat channels and thin water sheets, which may become more channelized in winter, and more responsive to changes in meltwater inputs. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
207.
Steep erosion‐prone and vegetation‐free slopes are widespread in alpine areas and are often discussed since they have a high socio‐economic damage potential. We present an eco‐engineering approach to test whether a mycorrhizal inoculum improves the establishment of hedge brush layers and in turn soil structural stability on a steep, coarse‐grained vegetation‐free slope in the eastern Swiss Alps. We established (i) mycorrhizal and (ii) non‐mycorrhizal treated eco‐engineered research plots on a field experimental scale, covering a total area of approximately 1000 m2 on an east‐northeast (ENE) exposed slope, where many environmental parameters can be regarded as homogeneous. After a full vegetation period, we quantified soil aggregate stability, the formation of water stable aggregates and the fine‐root development. Our results illustrate that the establishment of brush layers without mycorrhizal inoculum increased aggregate stability significantly. Against our expectation and glasshouse experiments, the addition of mycorrhizal inoculum did not have a statistically significant effect after one vegetation period although it tended to increase aggregate stability. Analogously, root length density (RLD) tended to be higher at the non‐mycorrhizal treated site. Aggregate stability was significantly correlated with RLD. Studies on a bigger field experimental scale are inevitable, complement glasshouse studies and lead to a better understanding for a successful application of sustainable eco‐engineering measures in alpine environments. Based on our results and considering the fact that the response time in natural ecosystems may be slower than in laboratory approaches, we conclude that long‐term field studies are necessary to validate results gained through laboratory experiments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
208.
Event sediment transport and yield were studied for 45 events in the upstream part of the 260 km2 agricultural Koga catchment that drains to an irrigation reservoir. Discharge and turbidity data were collected over a period of more than a year, accompanied by grab sampling. Turbidity was very well correlated with the sediment concentrations from the samples (r = 0.99), which allowed us to estimate the temporal patterns of sediment concentrations within events. The hysteresis patterns between discharge and sediment concentrations were analysed to provide insight into the different sediment sources. Anticlockwise patterns are the dominant hysteresis patterns in the area, suggesting smaller contributions of suspended sediment from the river channels than from the hillslopes and agricultural areas. Complicated types of hysteresis patterns were mostly observed for long events with multiple peaks. For a given discharge, sediment yields in August and September, when the catchment was almost completely covered with vegetation, were much smaller than during the rest of the rainy season. The hysteresis patterns and timing suggest that the sediment availability from the agricultural areas and hillslopes affects sediment yields more strongly than does peak discharge. Two distinct types of sediment rating curves were observed for the season when the agricultural land was covered with vegetation and when it was not, indicating the dominating contribution of land use/cover to sediment yields in the catchment. The rate of suspended sediment transport in the area was estimated as 25.6 t year?1 ha?1. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
209.
Arctic river basins are amongst the most vulnerable to climate change. However, there is currently limited knowledge of the hydrological processes that govern flow dynamics in Arctic river basins. We address this research gap using natural hydrochemical and isotopic tracers to identify water sources that contributed to runoff in river basins spanning a gradient of glacierization (0–61%) in Svalbard during summer 2010 and 2011. Spatially distinct hydrological processes operating over diurnal, weekly and seasonal timescales were characterized by river hydrochemistry and isotopic composition. Two conceptual water sources (‘meltwater’ and ‘groundwater’) were identified and used as a basis for end‐member mixing analyses to assess seasonal and year‐to‐year variability in water source dynamics. In glacier‐fed rivers, meltwater dominated flows at all sites (typically >80%) with the highest contributions observed at the beginning of each study period in early July when snow cover was most extensive. Rivers in non‐glacierized basins were sourced initially from snowmelt but became increasingly dependent on groundwater inputs (up to 100% of total flow volume) by late summer. These hydrological changes were attributed to the depletion of snowpacks and enhanced soil water storage capacity as the active layer expanded throughout each melt season. These findings provide insight into the processes that underpin water source dynamics in Arctic river systems and potential future changes in Arctic hydrology that might be expected under a changing climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
210.
This study proposes an innovative passive vibration mitigation device employing essentially nonlinear elastomeric springs as its most critical component. Essential nonlinearity denotes the absence (or near absence) of a linear component in the stiffness characteristics of these elastomeric springs. These devices were implemented and tested on a large‐scale nine‐story model building structure. The main focus of these devices is to mitigate structural response under impulse‐like and seismic loading when the structure remains elastic. During the design process of the device, numerical simulations, optimizations, and parametric studies of the structure‐device system were performed to obtain stiffness parameters for the devices so that they can maximize the apparent damping of the fundamental mode of the structure. Pyramidal elastomeric springs were employed to physically realize the optimized essentially nonlinear spring components. Component‐level finite element analyses and experiments were conducted to design the nonlinear springs. Finally, shake table tests using impulse‐like and seismic excitation with different loading levels were performed to experimentally evaluate the performance of the device. Experimental results demonstrate that the properly designed devices can mitigate structural vibration responses, including floor acceleration, displacement, and column strain in an effective, rapid, and robust fashion. Comparison between numerical and experimental results verified the computational model of the nonlinear system and provided a comprehensive verification for the proposed device. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号