A water quality investigation was carried out in the Deoria district, Ganga plain, to assess the suitability of surface and
groundwaters for domestic, agricultural, and industrial purposes. As much as 50 representative samples from river and groundwater
were collected from various stations to monitor the water chemistry of various ions, comprising Ca2+, Mg2+, Na+, K+, HCO3−, SO42−, NO3−, Cl−, F−, and trace metals, such as Fe, Cu, Mn, Zn, Cd, and Pb. The results showed that electrical conductance (EC), total dissolved
solids (TDS), HCO3−, Mg2+, Na+, and total hardness (TH) are above the maximum desirable limit, and apart from Fe and Mn all other trace metals are within
the maximum permissible limit for drinking water. The calculated values for sodium absorption ratio (SAR), salinity, residual
sodium carbonate (RSC), and permeability index (PI) indicate well to permissible use of water for irrigation. High values
of Na%, RSC, and Mg-hazard (MH) at some stations restrict its use for agricultural purpose. Anthropogenic activities affect
the spatial variation of water quality. Economic and social developments of the study area is closely associated with the
characteristics of the hydrological network. 相似文献
Rock slope stability is of great concern along highway routes as stability problems on cut slopes may cause fatal events as well as loss of property. In rock slope engineering, stability evaluations are commonly performed by means of analytical or numerical analyses, principally considering the factor of safety concept. As a matter of fact, the probabilistic assessment of slope stability is progressively getting popularity due to difficulties in assigning the most appropriate values to design parameters in analytical or numerical methods. Additionally, the effect of heterogeneities in rock masses and discontinuities on the analysis results is minimized through the probabilistic concept. In this study, slope stability of high and steep sedimentary rock cut slopes along a state highway in Adilcevaz-Bitlis (Turkey) was evaluated on the basis of probabilistic approach using the Slope Stability Probability Classification (SSPC) system. The probabilistic assessment indicates major slope stability problems because of discontinuity controlled and discontinuity orientation independent mass movements. Almost all studied cut slopes suffer from orientation-independent stability problems with very low stability probabilities. Additionally, the probability of planar and toppling failures is significantly high with respect to the SSPC system. The stability problems along the investigated rock slopes were also verified by field reconnaissance. Remedial measures such as slope re-design and reinforcement at the studied locations should be taken to prevent hazardous events along the highway. On the other hand, the probabilistic approach may be a useful tool during rock slope engineering to overcome numerous uncertainties when probabilistic and analytic results are compared. 相似文献
Almost all astronomers now believe that the Hubble recession law was directly inferred from astronomical observations. It
turns out that this common belief is completely false. Those models advocating the idea of an expanding universe are ill-founded
on observational grounds. This means that the Hubble recession law is really a working hypothesis. One alternative to the
Hubble recession law is the tired-light hypothesis originally proposed by Zwicky (Proc. Nat. Acad. Sci. 15:773, 1929). This hypothesis leads to a universe that is an eternal cosmos continually evolving without beginning or end. Such a universe
exists in a dynamical state of virial equilibrium. Observational studies of the redshift-magnitude relation for Type Ia supernovae
in distant galaxies might provide the best observational test for a tired-light cosmology. The present study shows that the
model Hubble diagram for a tired-light cosmology gives good agreement with the supernovae data for redshifts in the range
0<z<2. This observational test of a static cosmology shows that the real universe is not necessarily undergoing expansion nor
acceleration.
An erratum to this article can be found at 相似文献
Landslide susceptibility assessment using GIS has been done for part of Uttarakhand region of Himalaya (India) with the objective of comparing the predictive capability of three different machine learning methods, namely sequential minimal optimization-based support vector machines (SMOSVM), vote feature intervals (VFI), and logistic regression (LR) for spatial prediction of landslide occurrence. Out of these three methods, the SMOSVM and VFI are state-of-the-art methods for binary classification problems but have not been applied for landslide prediction, whereas the LR is known as a popular method for landslide susceptibility assessment. In the study, a total of 430 historical landslide polygons and 11 landslide affecting factors such as slope angle, slope aspect, elevation, curvature, lithology, soil, land cover, distance to roads, distance to rivers, distance to lineaments, and rainfall were selected for landslide analysis. For validation and comparison, statistical index-based methods and the receiver operating characteristic curve have been used. Analysis results show that all these models have good performance for landslide spatial prediction but the SMOSVM model has the highest predictive capability, followed by the VFI model, and the LR model, respectively. Thus, SMOSVM is a better model for landslide prediction and can be used for landslide susceptibility mapping of landslide-prone areas. 相似文献
Development of the ideas about the equilibrium between freshwater and saline water has received considerable attention in the literature, but little has been written so far about the earliest scientific works about well salinization. Based on a review of the literature from the second half of the 19th century and the early 20th century, this historical note explores how insights into groundwater abstraction and saltwater intrusion developed, and examples of the earliest field studies are provided. Fundamental research was driven by the need for increasing water supply, but the progress of science did not lead to sustainable management practices everywhere. Research outcomes were shared between scientists of different countries, marking the beginning of coastal hydrogeology as a scientific specialization in the first decade of the 20th century. 相似文献
The initial collision between Indian and Asian continents marked the starting point for transformation of land-sea thermal contrast, uplift of the Tibet-Himalaya orogen, and climate change in Asia. In this paper, we review the published literatures from the past 30 years in order to draw consensus on the processes of initial collision and suturing that took place between the Indian and Asian plates. Following a comparison of the different methods that have been used to constrain the initial timing of collision, we propose that the tectono-sedimentary response in the peripheral foreland basin provides the most sensitive index of this event, and that paleomagnetism presents independent evidence as an alternative, reliable, and quantitative research method. In contrast to previous studies that have suggested collision between India and Asia started in Pakistan between ca. 55 Ma and 50 Ma and progressively closed eastwards, more recent researches have indicated that this major event first occurred in the center of the Yarlung Tsangpo suture zone (YTSZ) between ca. 65 Ma and 63 Ma and then spreading both eastwards and westwards. While continental collision is a complicated process, including the processes of deformation, sedimentation, metamorphism, and magmatism, different researchers have tended to define the nature of this event based on their own understanding, an intuitive bias that has meant that its initial timing has remained controversial for decades. Here, we recommend the use of reconstructions of each geological event within the orogenic evolution sequence as this will allow interpretation of collision timing on the basis of multidisciplinary methods. 相似文献
GPS data from the International GNSS Service (IGS) network were used to study the development of the severe geomagnetic storm
of November 7–12, 2004, in the total electron content (TEC) on a global scale. The TEC maps were produced for analyzing the
storm. For producing the maps over European and North American sectors, GPS measurements from more than 100 stations were
used. The dense network of GPS stations provided TEC measurements with a high temporal and spatial resolution. To present
the temporal and spatial variation of TEC during the storm, differential TEC maps relative to a quiet day (November 6, 2004)
were created.
The features of geomagnetic storm attributed to the complex development of ionospheric storm depend on latitude, longitude
and local time. The positive, as well as negative effects were detected in TEC variations as a consequence of the evolution
of the geomagnetic storm. The maximal effect was registered in the subauroral/auroral ionosphere during substorm activity
in the evening and night period. The latitudinal profiles obtained from TEC maps for Europe gave rise to the storm-time dynamic
of the ionospheric trough, which was detected on November 7 and 9 at latitudes below 50°N. In the report, features of the
response of TEC to the storm for European and North American sectors are analyzed. 相似文献
Tidal mixing plays an important role in the modification of dense water masses around the Antarctic continent. In addition to the vertical (diapycnal) mixing in the near-bottom layers, lateral mixing can also be of relevance in some areas. A numerical tide simulation shows that lateral tidal mixing is not uniformly distributed along the shelf break. In particular, strong mixing occurs all along the Ross Sea and Southern Weddell Sea shelf breaks, while other regions (e.g., the western Weddell Sea) are relatively quiet. The latter regions correspond surprisingly well to areas where indications for cross-shelf exchange of dense water masses have been found. The results suggest that lateral tidal mixing may account for the relatively small contribution of Ross Sea dense water masses to Antarctic Bottom Water. 相似文献
A fluorescent sand-tracer experiment was performed at Comporta Beach (Portugal) with the aim of acquiring longshore sediment transport data on a reflective beach, the optimization of field and laboratory tracer procedures and the improvement of the conceptual model used to support tracer data interpretation.
The field experiment was performed on a mesotidal reflective beach face in low energetic conditions (significant wave height between 0.4 and 0.5 m). Two different colour tracers (orange and blue) were injected at low tide and sampled in the two subsequent low tides using a high resolution 3D grid extending 450 m alongshore and 30 m cross-shore. Marked sand was detected using an automatic digital image processing system developed in the scope of the present experiment.
Results for the two colour tracers show a remarkable coherence, with high recovery rates attesting data validity. Sand tracer displayed a high advection velocity, but with distinct vertical distribution patterns in the two tides: in the first tide there was a clear decrease in tracer advection velocity with depth while in the second tide, the tracer exhibited an almost uniform vertical velocity distribution. This differing behaviour suggests that, in the first tide, the tracer had not reached equilibrium within the transport system, pointing to a considerable time lag between injection and complete mixing. This issue has important implications for the interpretation of tracer data, indicating that short term tracer experiments tend to overestimate transport rates. In this work, therefore, longshore estimates were based on tracer results obtained during the second tide.
The estimated total longshore transport rate at Comporta Beach was 2 × 10− 3 m3/s, more than four times larger than predicted using standard empirical longshore formulas. This discrepancy, which results from the unusually large active moving layer observed during the experiment, confirms the idea that most common longshore transport equations under-estimate total sediment transport in plunging/surging waves. 相似文献