首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   945篇
  免费   35篇
  国内免费   23篇
测绘学   37篇
大气科学   47篇
地球物理   180篇
地质学   600篇
海洋学   32篇
天文学   64篇
综合类   6篇
自然地理   37篇
  2023年   4篇
  2022年   34篇
  2021年   37篇
  2020年   33篇
  2019年   24篇
  2018年   77篇
  2017年   85篇
  2016年   63篇
  2015年   42篇
  2014年   64篇
  2013年   79篇
  2012年   41篇
  2011年   51篇
  2010年   37篇
  2009年   40篇
  2008年   33篇
  2007年   21篇
  2006年   24篇
  2005年   24篇
  2004年   18篇
  2003年   16篇
  2002年   16篇
  2001年   8篇
  2000年   11篇
  1999年   11篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   8篇
  1984年   5篇
  1983年   3篇
  1982年   8篇
  1981年   3篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
  1970年   2篇
  1969年   2篇
  1963年   1篇
排序方式: 共有1003条查询结果,搜索用时 187 毫秒
361.
Geotechnical engineering and unpredictable piling problems of highly urbanized areas underlain by intensive geological fracture zones require a better understanding of their spatial pattern and developments. Unlike traditional techniques which use geophysical survey and visual interpretation of optical satellite images, this study presents a modified approach to revealing the buried geological fractures in karst terrain, which incorporates Wood??s algorithm. The algorithm binary maps were modified by applying additional Soble filter with 10% threshold and equalization enhancement. These modifications have proven good discrimination for morphological linear and curvilinear derived from DEM. Results of the modified method were compared to the existing geological map and validated by conducting field observations. The analysis of the results and corresponding geological and topographical maps showed the effectiveness of the method to recognize the pattern of buried geological fractures. The results obtained demonstrated that maps of the modified method can be used as a reference map prior to any site investigation.  相似文献   
362.
363.
In Mabahiss Bay, north Hurghada City, Red Sea, Egypt, the bathymetric measurements show the irregular topography of the bottom. The bottom sediments are mainly composed of sand fractions (average 73.5%). Gravel and sand contents decrease with depth. On the other hand, silt and clay percents show indirect relation with depth. Abnormally, there are some spots found near the coast where the percent of both silt and clay increases. They also show carbonate sediments (average 90.15%) increasing toward the bay center. The narrow belt adjacent to the shore area has lower carbonate content reflecting the effect of clastic sediments input into the area. The sediments in the study area have more than one source as indicated from the results of the mechanical analysis. Wide range of grain size distributions, clay spots and low carbonate content near the shore indicate change in the nature of sedimentary environment (i.e., pollution) which may be caused by land filling accompanied with urbanization and building of touristic resorts and centers. The organic matter content in the sediments is much higher than that of the other areas in the Red sea (average 4.8%) with considerable accumulation in the inner most parts of the bay. This may be due to relative abundance of organic productivity, direct discharge of domestic waste in some spots along the coast of the study area, and/or local contamination of hydrocarbons (i.e., tar balls thrown out on shore by weak waves through the few inlets of the study area). The average concentrations of lead, nickel, copper, and cadmium are 44, 34, 51, and 3.1?ppm, respectively. The suggested origin of these metals is either organic (localized oil pollution), or using of antifouling and anticorrosive paints from fishing and tourist boats. Other metals, particularly manganese (average 77?ppm), cobalt (average 51?ppm), and zinc (average 16?ppm) as well as sodium (average 0.32%) and potassium (av. 0.10%) show a common trend of increasing concentration toward the outermost parts of the bay. Some parts along shoreline have increasing concentrations, even if these parameters having a common trend of increase towards the center of the bay. This may be either due to sewage and wastewaters discharges from many outlets of tourist centers and fishermen and cargo boats, and/or terrestrial sediments input. Direct comparison of the present levels of heavy metals in Mabahiss Bay with other published data along the Red Sea and Gulf of Suez shows that the study area has higher concentrations. Dredging, land filling, localized oil pollution, using of antifouling and anticorrosive paints from fishing and tourist boats (where the bay is used as harbor for many of fishermen and cargo boats), sewage, variable amounts of municipal wastewater from many outlets of tourist centers considered to be the sources of pollution within Mabahiss bay. There are many effects of pollution on Mabahiss Bay environment among which: (1) death of fishes, seaweeds, birds, marine mammals, etc., (2) damage of beaches and other recreational areas, (3) damage of marine ecosystem by eliminating or decreasing population of certain species, (4) hazard to human from ingesting contaminated food, and more.  相似文献   
364.
Randomly distributed fibers have been successfully used for the reinforcement of soils to improve their properties. However, the technique requires extensive testing on samples before it can be implemented. Therefore, the purpose of this paper is to identify and quantify the influence of variables of linen-fiber (content and aspect ratio) on the performance of linen-fiber reinforced silty-sand specimens. The linen fibers have filament textures with special properties such as: low costs, plenitude in the region, lightweight, tension capacity and relative strength against deterioration. Linen fibers with diverse fiber contents (0.25, 0.50, 0.75 and 1.0% of dry weight) and ratio aspect (50, 100 and 150) were used. The composite soils were laboratory tested for compaction, unconfined compression strength (UCS), California Bearing Ratio (CBR) and direct shear tests. The test results indicated that adding linen fiber in silty-sand soil resulted in increasing in unconfined compression strength, California Bearing Ratio values, peak friction angle and cohesion values. Furthermore, adding linen fibers have the dual benefit of increasing the stiffness (modulus of elasticity) and the ductility of the reinforced soil. However, this study suggests that the optimum fiber content for silty-sand samples reinforced with linen fibers is approximately 0.75% of the dry weight of the soil and a maximum performance was achieved at aspect ratio of 100 to avoid fiber balling. The laboratory results were used for the development of linear regression equation that best relates the UCS and CBR of a reinforced soil to the aforementioned parameters.  相似文献   
365.
Sabah A.  Ismail  Shoji  Arai  Ahmed H.  Ahmed  Yohei  Shimizu 《Island Arc》2009,18(1):175-183
Ophiolitic rocks (chromitites and serpentinized peridotites) were petrologically examined in detail for the first time from Rayat, in the Iraqi part of the Zagros thrust zone, an ophiolitic belt. Almost all the primary silicates have been altered out, but chromian spinel has survived from alteration and gives information about the primary petrological characteristics. The protolith of the serpentinite was clinopyroxene-free harzburgite with chromian spinel of intermediate Cr# (= Cr/[Cr + Al] atomic ratio) of 0.5 to 0.6. The harzburgite with that signature is the most common in the mantle section of the Tethyan ophiolites such as the Oman ophiolite, and is the most suitable host for chromitite genesis. Except for one sample, which has Cr# = 0.6 for spinel, the Cr# of spinel is high, around 0.7, in chromitite. The variation in Cr# of spinel in chromitite observed here has been also reported in the Oman ophiolite. The peridotite with chromitite pods exposed at Rayat was derived from an ophiolite similar in petrological character to the Oman ophiolite, one of the typical Tethyan ophiolites (fragments of Tethyan oceanic lithosphere). This result is consistent with the previous interpretation based on geological analysis.  相似文献   
366.
Modelling density driven flow problems requires an excessive computational time and/or heavy equipments due to the non-linear coupling between flow and transport equations. In this work, we develop a robust numerical model with efficient advanced approximations for both spatial and temporal discretizations in order to reduce the excessive computational requirement while maintaining accuracy.  相似文献   
367.
Partially saturated reservoirs are one of the major sources of seismic wave attenuation, modulus defect and velocity dispersion in real seismic data. The main attenuation and dispersion phenomenon is wave induced fluid flow due to the heterogeneity in pore fluids or porous rock. The identification of pore fluid type, saturation and distribution pattern within the pore space is of great significance as several seismic and petrophysical properties of porous rocks are largely affected by fluid type, saturation and fluid distribution pattern. Based on Gassmann-Wood and Gassmann- Hill rock physics models modulus defect, velocity dispersion and attenuation in Jurassic siliclastic partially-saturated rocks are studied. For this purpose two saturation patterns - uniform and patchy - are considered within the pore spaces in two frequency regimes i.e., lower frequency and higher frequency. The results reveal that at low enough frequency where saturation of liquid and gas is uniform, the seismic velocity and bulk modulus are lower than at higher frequency where saturation of fluid mixture is in the form of patches. The velocity dispersion and attenuation is also modeled at different levels of gas saturation. It is found that the maximum attenuation and velocity dispersion is at low gas saturation. Therefore, the dispersion and attenuation can provide a potential way to predict gas saturation and can be used as a property to differentiate low from high gas saturation.  相似文献   
368.
In‐channel sand mining by dredge removes large quantities of bed sediment and alters channel morphodynamic processes. While the reach‐scale impacts of dredging are well documented, the effects of the dredged borrow pit on the local flow and sediment transport are poorly understood. These local effects are important because they control the post‐dredge evolution of the borrow pit, setting the pit lifespan and affecting reach‐scale channel morphology. This study documents the observed morphological evolution of a large (1·46 million m3) borrow pit mined on a lateral sandbar in the lower Mississippi River using a time‐series of multibeam bathymetric surveys. During the 2·5 year time‐series, 53% of the initial pit volume infilled with sediment, decreasing pit depth by an average of 0·88 m yr?1. To explore the controls of the observed infilling, a morphodynamic model (Delft3D) was used to simulate flow and sediment transport within the affected river reach. The model indicated that infilling rates were primarily related to the riverine sediment supply and pit geometry. The pit depth and length influenced the predicted magnitude of the pit bed shear stress relative to its pre‐dredged value, i.e. the bed‐stress reduction ratio (R*), a metric that was correlated with the magnitude and spatial distribution of infilling. A one‐dimensional reduced‐complexity model was derived using predicted sediment supply and R* to simulate patterns of pit infilling. This simplified model of borrow‐pit evolution was able to closely approximate the amount and patterns of sediment deposition during the study period. Additional model experiments indicate that, for a borrow pit of a set volume, creating deep, longitudinally‐shorter borrow pits significantly increased infilling rates relative to elongated pits. Study results provide insight into the resilience of alluvial river channels after a disturbance and the sustainability of sand mining as a sediment source for coastal restoration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
369.
Several investigations have recently considered the possible impacts of climate change and seawater level rise on seawater intrusion in coastal aquifers. All have revealed the severity of the problem and the significance of the landward movement of the dispersion zone under the condition of seawater level rise. Most of the studies did not consider the possible effects of the seawater rise on the inland movement of the shoreline and the associate changes in the boundary conditions at the seaside and the domain geometry. Such effects become more evident in flat, low land, coastal alluvial plans where large areas might be submerged with seawater under a relatively small increase in the seawater level. None of the studies combined the effect of increased groundwater pumping, due to the possible decline in precipitation and shortage in surface water resources, with the expected landward shift of the shore line. In this article, the possible effects of seawater level rise in the Mediterranean Sea on the seawater intrusion problem in the Nile Delta Aquifer are investigated using FEFLOW. The simulations are conducted in horizontal view while considering the effect of the shoreline landward shift using digital elevation models. In addition to the basic run (current conditions), six different scenarios are considered. Scenarios one, two, and three assume a 0.5 m seawater rise while the total pumping is reduced by 50%, maintained as per the current conditions and doubled, respectively. Scenarios four, five, and six assume a 1.0 m seawater rise and the total pumping is changed as in the first three scenarios. The shoreline is moved to account for the seawater rise and hence the study domain and the seaside boundary are modified accordingly. It is concluded that, large areas in the coastal zone of the Nile Delta will be submerged by seawater and the coast line will shift landward by several kilometers in the eastern and western sides of the Delta. Scenario six represents the worst case under which the volume of freshwater will be reduced to about 513 km3 (billion m3).  相似文献   
370.
We have relocated 259 inland earthquakes in northern Egypt using the double-difference hypocenter technique. Among this dataset we are able to determine source mechanisms of 200 events using P-wave polarities and amplitude ratios as well. The studied earthquakes have been recorded by the Egyptian National Seismological Network from October 1997 to December 2006 with local magnitude (ML) varies between 1.5 and 5.0. Three earthquake dislocations have been defined namely: Dahshour, southeast Beni-Suef, and Cairo-Suez district. Earthquake activities tend to occur in clusters along the first dislocation (Dahshour) however, relatively scattered along the second (southeast Beni-Suef) and the third (Cairo-Suez district) dislocations. At Dahshour dislocation three distinct clusters have been distinguished. Source mechanism solutions of Dahshour earthquakes displayed normal faulting with a strike-slip component to strike-slip faulting with a minor normal dip-slip component. Most of earthquake focal mechanism orientations are varying from NE-SW to NW-SE. The fault plane solutions of Beni-Suef earthquakes represented normal faulting with a strike-slip component. If the NNW-SSE striking plane has been chosen to be the actual fault plane, some solutions would indicated normal faulting with a sinistral strike-slip motion and other reflect normal faulting with a dextral strike-slip component. The fault plane solutions of Cairo-Suez district earthquakes are compatible with E-W to ENE-WSW striking normal fault with a dextral strike-slip motion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号