首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   729篇
  免费   24篇
  国内免费   12篇
测绘学   16篇
大气科学   71篇
地球物理   186篇
地质学   282篇
海洋学   83篇
天文学   93篇
综合类   4篇
自然地理   30篇
  2024年   1篇
  2023年   5篇
  2022年   26篇
  2021年   19篇
  2020年   28篇
  2019年   25篇
  2018年   28篇
  2017年   23篇
  2016年   40篇
  2015年   26篇
  2014年   38篇
  2013年   49篇
  2012年   44篇
  2011年   55篇
  2010年   35篇
  2009年   45篇
  2008年   37篇
  2007年   27篇
  2006年   29篇
  2005年   19篇
  2004年   28篇
  2003年   17篇
  2002年   20篇
  2001年   20篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1997年   8篇
  1996年   5篇
  1995年   11篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   3篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1958年   1篇
排序方式: 共有765条查询结果,搜索用时 0 毫秒
761.
The recognition of fragility and vulnerability functions as a fundamental tool in seismic risk assessment has led to the development of more and more complex and elaborate procedures for their computation. Although these functions have been traditionally produced using observed damage and loss data, more recent studies propose the employment of analytical methodologies as a way to overcome the frequent lack of post‐earthquake data. The variation of the structural modelling approach on the estimation of building capacity has been the target of many studies in the past; however, its influence on the resulting vulnerability model for classes of buildings, the impact in loss estimations or propagation of the uncertainty to the seismic risk calculations has so far been the object of limited scrutiny. In this paper, an extensive study of static and dynamic procedures for estimating the nonlinear response of buildings has been carried out to evaluate the impact of the chosen methodology on the resulting capacity, fragility, vulnerability and risk outputs. Moreover, the computational effort and numerical stability provided by each approach have been evaluated and conclusions drawn regarding the optimal balance between accuracy and complexity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
762.
Miranda  J.M.  Silva  P.F.  Lourenço  N.  Henry  B.  Costa  R.  Saldanha Team  the 《Marine Geophysical Researches》2002,23(4):299-318
We present a study of the magnetic properties of a group of basalt samples from the Saldanha Massif (Mid-Atlantic Ridge – MAR – 36° 33 54 N, 33° 26 W), and we set out to interpret these properties in the tectono-magmatic framework of this sector of the MAR. Most samples have low magnetic anisotropy and magnetic minerals of single domain grain size, typical of rapid cooling. The thermomagnetic study mostly shows two different susceptibility peaks. The high temperature peak is related to mineralogical alteration due to heating. The low temperature peak shows a distinction between three different stages of low temperature oxidation: the presence of titanomagnetite, titanomagnetite and titanomaghemite, and exclusively of titanomaghemite. Based on established empirical relationships between Curie temperature and degree of oxidation, the latter is tentatively deduced for all samples. Finally, swath bathymetry and sidescan sonar data combined with dive observations show that the Saldanha Massif is located over an exposed section of upper mantle rocks interpreted to be the result of detachment tectonics. Basalt samples inside the detachment zone often have higher than expected oxidation rates; this effect can be explained by the higher permeability caused by the detachment fault activity.  相似文献   
763.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   
764.
A numerical model of the modified time-independent mild-slope equation for linear waves over a rapidly changing finite porous bed is presented. In this solution the reflection and phase coefficient shift are solved implicitly. Boundaries are assumed to be open, partially reflecting, or fully absorbing through the second-order parabolic approximation. Discretisation of the governing equation and boundary conditions is by means of a second-order accurate central difference scheme. The resulting sparse-banded matrix is solved using an inexpensive banded solver with Gaussian elimination. The model has been validated and the numerical predictions are in excellent agreement with analytical solutions.  相似文献   
765.
Polarimetry is an area of high energy astrophysics which is still relatively unexplored, even though it is recognized that this type of measurement could drastically increase our knowledge of the physics and geometry of high energy sources. For this reason, in the context of the design of a Gamma-Ray Imager based on new hard-X and soft gamma ray focusing optics for the next ESA Cosmic Vision call for proposals (Cosmic Vision 2015-2025), it is important that this capability should be implemented in the principal on-board instrumentation. For the particular case of wide band-pass Laue optics we propose a focal plane based on a thick pixelated CdTe detector operating with high efficiency between 60–600keV. The high segmentation of this type of detector (1–2mm pixel size) and the good energy resolution (a few keV FWHM at 500keV) will allow high sensitivity polarisation measurements (a few % for a 10mCrab source in 106s) to be performed. We have evaluated the modulation Q factors and minimum detectable polarisation through the use of Monte Carlo simulations (based on the GEANT 4 toolkit) for on and off-axis sources with power law emission spectra using the point spread function of a Laue lens in a feasible configuration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号